@@ -110,12 +110,12 @@ Arguments isPullback {_ _ _ _ _ _ _ _ _} _.
110110
111111Section cubical.
112112
113- Context {C : precategory} (hsC : has_homsets C) (BPC : BinProducts C).
113+ Context {C : category} (BPC : BinProducts C).
114114
115115(* Setup notations *)
116116Local Notation "Γ ⊢" := (PreShv (∫ Γ)) (at level 50).
117117Local Notation "Γ ⊢ A" := (@TermIn _ Γ A) (at level 50).
118- Local Notation "A ⦃ s ⦄" := (subst_type hsC A s) (at level 40, format "A ⦃ s ⦄").
118+ Local Notation "A ⦃ s ⦄" := (subst_type A s) (at level 40, format "A ⦃ s ⦄").
119119Local Notation "Γ ⋆ A" := (@ctx_ext _ Γ A) (at level 30).
120120Local Notation "c '⊗' d" :=
121121 (BinProductObject _ (@BinProducts_PreShv C c d)) : cat.
@@ -292,14 +292,14 @@ Lemma isPullback_pF_e₀ I J (f : J --> I) :
292292 isPullback (nat_trans_ax p_F f) → isPullback (nat_trans_ax e₀ f).
293293Proof .
294294intros H.
295- apply (isPullback_two_pullback hsC _ _ _ _ _ _ H).
295+ apply (isPullback_two_pullback (homset_property _) _ _ _ _ _ _ H).
296296intros K g h Hgh.
297297use (unique_exists h); simpl in *.
298298- rewrite <- Hgh.
299299 set (HI := nat_trans_eq_pointwise Hpe₀ I).
300300 set (HJ := nat_trans_eq_pointwise Hpe₀ J); cbn in HI, HJ.
301301 now rewrite HI, HJ, !id_right.
302- - now intros HH; apply isapropdirprod; apply hsC .
302+ - now intros HH; apply isapropdirprod; apply homset_property .
303303- intros h' [H1 H2].
304304 rewrite <- H2.
305305 set (HH := nat_trans_eq_pointwise Hpe₀ J); cbn in HH.
@@ -359,7 +359,7 @@ now rewrite <-!assoc, H2, H3, assoc, H4, id_left, id_right.
359359Qed .
360360
361361(* We can lift the above operations to presheaves using yoneda *)
362- Let yon := yoneda_functor_data C hsC .
362+ Let yon := yoneda_functor_data C.
363363
364364Definition p_PreShv (I : C) : yon (I+) --> yon I := # yon (p_F I).
365365
@@ -391,15 +391,15 @@ use make_nat_trans.
391391 now apply funextsec; intro x; cbn; rewrite assoc.
392392Defined .
393393
394- Lemma isMonic_e₀_PreShv I : isMonic (e₀_PreShv I).
394+ Lemma isMonic_e₀_PreShv I : @ isMonic (PreShv C) _ _ (e₀_PreShv I).
395395Proof .
396396intros Γ σ τ H.
397397apply (nat_trans_eq has_homsets_HSET); intros J; apply funextsec; intro ρ.
398398generalize (eqtohomot (nat_trans_eq_pointwise H J) ρ).
399399now apply isMonic_e₀.
400400Qed .
401401
402- Lemma isMonic_e₁_PreShv I : isMonic (e₁_PreShv I).
402+ Lemma isMonic_e₁_PreShv I : @ isMonic (PreShv C) _ _ (e₁_PreShv I).
403403Proof .
404404intros Γ σ τ H.
405405apply (nat_trans_eq has_homsets_HSET); intros J; apply funextsec; intro ρ.
0 commit comments