Skip to content

Commit 3797ce2

Browse files
Adapting to UniMath refactoring precategories: fixed Cubical; all now compiling again.
1 parent a9d6b66 commit 3797ce2

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

TypeTheory/Cubical/FillFromComp.v

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -110,12 +110,12 @@ Arguments isPullback {_ _ _ _ _ _ _ _ _} _.
110110

111111
Section cubical.
112112

113-
Context {C : precategory} (hsC : has_homsets C) (BPC : BinProducts C).
113+
Context {C : category} (BPC : BinProducts C).
114114

115115
(* Setup notations *)
116116
Local Notation "Γ ⊢" := (PreShv (∫ Γ)) (at level 50).
117117
Local Notation "Γ ⊢ A" := (@TermIn _ Γ A) (at level 50).
118-
Local Notation "A ⦃ s ⦄" := (subst_type hsC A s) (at level 40, format "A ⦃ s ⦄").
118+
Local Notation "A ⦃ s ⦄" := (subst_type A s) (at level 40, format "A ⦃ s ⦄").
119119
Local Notation "Γ ⋆ A" := (@ctx_ext _ Γ A) (at level 30).
120120
Local Notation "c '⊗' d" :=
121121
(BinProductObject _ (@BinProducts_PreShv C c d)) : cat.
@@ -292,14 +292,14 @@ Lemma isPullback_pF_e₀ I J (f : J --> I) :
292292
isPullback (nat_trans_ax p_F f) → isPullback (nat_trans_ax e₀ f).
293293
Proof.
294294
intros H.
295-
apply (isPullback_two_pullback hsC _ _ _ _ _ _ H).
295+
apply (isPullback_two_pullback (homset_property _) _ _ _ _ _ _ H).
296296
intros K g h Hgh.
297297
use (unique_exists h); simpl in *.
298298
- rewrite <- Hgh.
299299
set (HI := nat_trans_eq_pointwise Hpe₀ I).
300300
set (HJ := nat_trans_eq_pointwise Hpe₀ J); cbn in HI, HJ.
301301
now rewrite HI, HJ, !id_right.
302-
- now intros HH; apply isapropdirprod; apply hsC.
302+
- now intros HH; apply isapropdirprod; apply homset_property.
303303
- intros h' [H1 H2].
304304
rewrite <- H2.
305305
set (HH := nat_trans_eq_pointwise Hpe₀ J); cbn in HH.
@@ -359,7 +359,7 @@ now rewrite <-!assoc, H2, H3, assoc, H4, id_left, id_right.
359359
Qed.
360360

361361
(* We can lift the above operations to presheaves using yoneda *)
362-
Let yon := yoneda_functor_data C hsC.
362+
Let yon := yoneda_functor_data C.
363363

364364
Definition p_PreShv (I : C) : yon (I+) --> yon I := # yon (p_F I).
365365

@@ -391,15 +391,15 @@ use make_nat_trans.
391391
now apply funextsec; intro x; cbn; rewrite assoc.
392392
Defined.
393393

394-
Lemma isMonic_e₀_PreShv I : isMonic (e₀_PreShv I).
394+
Lemma isMonic_e₀_PreShv I : @isMonic (PreShv C) _ _ (e₀_PreShv I).
395395
Proof.
396396
intros Γ σ τ H.
397397
apply (nat_trans_eq has_homsets_HSET); intros J; apply funextsec; intro ρ.
398398
generalize (eqtohomot (nat_trans_eq_pointwise H J) ρ).
399399
now apply isMonic_e₀.
400400
Qed.
401401

402-
Lemma isMonic_e₁_PreShv I : isMonic (e₁_PreShv I).
402+
Lemma isMonic_e₁_PreShv I : @isMonic (PreShv C) _ _ (e₁_PreShv I).
403403
Proof.
404404
intros Γ σ τ H.
405405
apply (nat_trans_eq has_homsets_HSET); intros J; apply funextsec; intro ρ.

0 commit comments

Comments
 (0)