@@ -7,6 +7,7 @@ Require Import UniMath.CategoryTheory.All.
77
88Require Import TypeTheory.Auxiliary.Auxiliary.
99Require Import TypeTheory.Auxiliary.CategoryTheory.
10+ Require Import TypeTheory.Auxiliary.SetsAndPresheaves.
1011Require Import TypeTheory.Auxiliary.Partial.
1112Require Import TypeTheory.ALV1.TypeCat.
1213Require Import TypeTheory.Initiality.SplitTypeCat_General.
@@ -19,20 +20,6 @@ Local Open Scope functions.
1920
2021Section Auxiliary.
2122
22- (** Functions giving path types in various hsets directly as hprops. *)
23- (* TODO: work out better way to treat them? *)
24- Definition mor_paths_hProp {C : category} {X Y : C} (f g : X --> Y)
25- : hProp
26- := make_hProp (f = g) (homset_property C _ _ _ _).
27-
28- Definition type_paths_hProp {C : split_typecat} {Γ : C} (A B : C Γ)
29- : hProp
30- := make_hProp (A = B) (isaset_types_typecat _ _ _).
31-
32- Definition tm_paths_hProp {C : split_typecat} {Γ : C} {A : C Γ} (s t : tm A)
33- : hProp
34- := make_hProp (s = t) (isaset_tm _ _).
35-
3623End Auxiliary.
3724
3825Section Partial_Interpretation.
@@ -62,15 +49,15 @@ Section Partial_Interpretation.
6249 - (* term expressions *)
6350 destruct e as [ m i | m A B b | m A B f a ].
6451 + (* [var_expr i] *)
65- assume_partial (type_paths_hProp ( type_of (E i)) T) e_Ei_T.
52+ assume_partial (type_of (E i) = T :> ty C $p _)%logic e_Ei_T.
6653 apply return_partial.
6754 exact (tm_transportf e_Ei_T (E i)).
6855 + (* [lam_expr A B b] *)
6956 get_partial (partial_interpretation_ty _ U Π _ _ E A) interp_A.
7057 set (E_A := extend_environment E interp_A).
7158 get_partial (partial_interpretation_ty _ U Π _ _ E_A B) interp_B.
7259 get_partial (partial_interpretation_tm _ U Π _ _ E_A interp_B b) interp_b.
73- assume_partial (type_paths_hProp ( Π _ interp_A interp_B) T) e_ΠAB_T.
60+ assume_partial (Π _ interp_A interp_B = T :> ty C $p _)%logic e_ΠAB_T.
7461 apply return_partial.
7562 refine (tm_transportf e_ΠAB_T _).
7663 exact (pi_intro _ _ _ _ interp_b).
@@ -81,7 +68,7 @@ Section Partial_Interpretation.
8168 set (Π_A_B := Π _ interp_A interp_B).
8269 get_partial (partial_interpretation_tm _ U Π _ _ E interp_A a) interp_a.
8370 get_partial (partial_interpretation_tm _ U Π _ _ E Π_A_B f) interp_f.
84- assume_partial (type_paths_hProp ( interp_B ⦃interp_a⦄) T) e_Ba_T.
71+ assume_partial (interp_B ⦃interp_a⦄ = T :> ty C $p _)%logic e_Ba_T.
8572 apply return_partial.
8673 refine (tm_transportf e_Ba_T _).
8774 refine (pi_app _ _ _ _ interp_f interp_a).
@@ -874,7 +861,7 @@ Section Totality.
874861 => ∀ (X:C) (E : typed_environment X Γ)
875862 (d_A : is_defined (partial_interpretation_ty U Π E A))
876863 (d_A' : is_defined (partial_interpretation_ty U Π E A')),
877- type_paths_hProp (evaluate d_A) ( evaluate d_A')
864+ (evaluate d_A = evaluate d_A' :> ty C $p _)
878865 | [! Γ |- a ::: A !]
879866 => ∀ (X:C) (E : typed_environment X Γ)
880867 (d_A : is_defined (partial_interpretation_ty U Π E A)),
@@ -884,7 +871,7 @@ Section Totality.
884871 (d_A : is_defined (partial_interpretation_ty U Π E A))
885872 (d_a : is_defined (partial_interpretation_tm U Π E (evaluate d_A) a))
886873 (d_a' : is_defined (partial_interpretation_tm U Π E (evaluate d_A) a')),
887- tm_paths_hProp (evaluate d_a) ( evaluate d_a')
874+ (evaluate d_a = evaluate d_a' :> tm_hSet _ )
888875 end .
889876 (* Note: we DON’T expect to need any inductive information for context judgements!
890877
0 commit comments