Skip to content

Commit 627f93b

Browse files
committed
makes this satellite compile again after merging UniMath PR #1728
1 parent 8cbed6c commit 627f93b

20 files changed

+84
-92
lines changed

Modules/Prelims/DerivationIsFunctorial.v

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -87,10 +87,10 @@ MR(X+o)) ---------> NR(X+o)
8787
Proof.
8888
split.
8989
- intro M.
90-
apply LModule_Mor_equiv;[exact D|].
90+
apply LModule_Mor_equiv.
9191
apply pre_whisker_identity.
9292
- intros M N O f g.
93-
apply LModule_Mor_equiv;[exact D|].
93+
apply LModule_Mor_equiv.
9494
apply pre_whisker_composition.
9595
Qed.
9696

@@ -149,7 +149,7 @@ f := η ∘ in₁
149149
Lemma LModule_to_deriv_is_nt : is_nat_trans (functor_identity _) ∂ LModule_to_deriv.
150150
Proof.
151151
intros M N f.
152-
apply (LModule_Mor_equiv _ D).
152+
apply LModule_Mor_equiv.
153153
apply (nat_trans_eq D).
154154
intro c.
155155
cbn.

Modules/Prelims/LModulesBinProducts.v

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -137,14 +137,14 @@ Local Notation σ := (lm_mult _).
137137
(g : LMOD ⟦ S, N ⟧) :
138138
(LModule_BinProductArrow S f g : LMOD ⟦_ , _⟧) · LModule_binproductPr1 = f.
139139
Proof.
140-
apply LModule_Mor_equiv; [exact C |].
140+
apply LModule_Mor_equiv.
141141
apply (BinProductPr1Commutes _ _ _ bpFunct).
142142
Qed.
143143
Lemma LModule_BinProductPr2Commutes (S : LMOD) (f : LMOD ⟦ S, M ⟧)
144144
(g : LMOD ⟦ S, N ⟧) :
145145
(LModule_BinProductArrow S f g : LMOD ⟦_ , _⟧) · LModule_binproductPr2 = g.
146146
Proof.
147-
apply LModule_Mor_equiv; [exact C |].
147+
apply LModule_Mor_equiv.
148148
apply (BinProductPr2Commutes _ _ _ bpFunct).
149149
Qed.
150150

@@ -162,10 +162,10 @@ Local Notation σ := (lm_mult _).
162162
- intro y.
163163
apply isapropdirprod; apply has_homsets_LModule.
164164
- intros y [h1 h2].
165-
apply LModule_Mor_equiv; [exact C |].
165+
apply LModule_Mor_equiv.
166166
apply (BinProductArrowUnique _ _ _ bpFunct).
167-
+ exact ((LModule_Mor_equiv _ C _ _ ) h1).
168-
+ exact ((LModule_Mor_equiv _ C _ _ ) h2).
167+
+ exact ((LModule_Mor_equiv _ _ _ ) h1).
168+
+ exact ((LModule_Mor_equiv _ _ _ ) h2).
169169
Defined.
170170
Definition LModule_ProductCone : BinProduct LMOD M N :=
171171
make_BinProduct LMOD M N LModule_binproduct
@@ -212,7 +212,7 @@ Section pullback_binprod.
212212
Defined.
213213

214214
Definition binprod_pbm_to_pbm_iso : iso (C:= precategory_LModule _ _) binprod_pbm pbm_binprod :=
215-
LModule_same_func_iso _ _ binprod_pbm_to_pbm_eq_mult (homset_property _).
215+
LModule_same_func_iso _ _ binprod_pbm_to_pbm_eq_mult.
216216

217217
Definition binprod_pbm_to_pbm_binprod : LModule_Mor _ binprod_pbm pbm_binprod :=
218218
morphism_from_iso binprod_pbm_to_pbm_iso.

Modules/Prelims/LModulesColims.v

Lines changed: 8 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -431,15 +431,13 @@ qu'on complète par propriété de [d e] en temps que morphisme de module
431431
dmor d e · LModule_coconeIn v = LModule_coconeIn u.
432432
Proof.
433433
apply LModule_Mor_equiv.
434-
- exact C.
435-
- apply (coconeInCommutes (colimCocone (coFunc d'))).
434+
apply (coconeInCommutes (colimCocone (coFunc d'))).
436435
Defined.
437436
Lemma LModule_coneOut_commutes (u v : vertex g) (e : edge u v) :
438437
LModule_coneOut u · dmor d e = LModule_coneOut v.
439438
Proof.
440439
apply LModule_Mor_equiv.
441-
- exact C.
442-
- apply (coneOutCommutes (limCone (limFunc d'))).
440+
apply (coneOutCommutes (limCone (limFunc d'))).
443441
Defined.
444442

445443

@@ -510,7 +508,7 @@ qu'on complète par propriété de [d e] en temps que morphisme de module
510508
use unique_exists.
511509
- exact (LModule_colimArrow cc).
512510
- intro v.
513-
apply LModule_Mor_equiv;[exact C|].
511+
apply LModule_Mor_equiv.
514512
apply (colimArrowCommutes (coFunc d')).
515513
- intro y.
516514
cbn -[isaprop].
@@ -519,7 +517,7 @@ qu'on complète par propriété de [d e] en temps que morphisme de module
519517
use has_homsets_LModule.
520518
- cbn.
521519
intros y h.
522-
apply LModule_Mor_equiv;[exact C|].
520+
apply LModule_Mor_equiv.
523521
apply (colimArrowUnique (coFunc d')).
524522
intro u.
525523
exact ( maponpaths pr1 (h u)).
@@ -530,7 +528,7 @@ qu'on complète par propriété de [d e] en temps que morphisme de module
530528
use unique_exists.
531529
- exact (LModule_limArrow cc).
532530
- intro v.
533-
apply LModule_Mor_equiv;[exact C|].
531+
apply LModule_Mor_equiv.
534532
apply (limArrowCommutes (limFunc d')).
535533
- intro y.
536534
cbn -[isaprop].
@@ -539,7 +537,7 @@ qu'on complète par propriété de [d e] en temps que morphisme de module
539537
use has_homsets_LModule.
540538
- cbn.
541539
intros y h.
542-
apply LModule_Mor_equiv;[exact C|].
540+
apply LModule_Mor_equiv.
543541
apply (limArrowUnique (limFunc d')).
544542
intro u.
545543
exact ( maponpaths pr1 (h u)).
@@ -622,8 +620,8 @@ Section pullback_lims.
622620
Qed.
623621

624622
Definition pb_LModule_colim_iso : iso (C := MOD R) cR (pb_LModule f cS) :=
625-
LModule_same_func_iso _ _ pb_colims_eq_mult (homset_property _).
623+
LModule_same_func_iso _ _ pb_colims_eq_mult.
626624

627625
Definition pb_LModule_lim_iso : iso (C := MOD R) lR (pb_LModule f lS) :=
628-
LModule_same_func_iso _ _ pb_lims_eq_mult (homset_property _).
626+
LModule_same_func_iso _ _ pb_lims_eq_mult.
629627
End pullback_lims.

Modules/Prelims/LModulesComplements.v

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ Require Import UniMath.CategoryTheory.Monads.LModules.
1111

1212
(** strangely enough, I didn't find the following lemma :
1313
*)
14-
Lemma monad_mor_to_lmodule_law {C : precategory} {R S : Monad C}
14+
Lemma monad_mor_to_lmodule_law {C : category} {R S : Monad C}
1515
(f : Monad_Mor R S) :
1616
LModule_Mor_laws R (T := tautological_LModule R)
1717
(T' := pb_LModule f (tautological_LModule S)) f.
@@ -24,6 +24,6 @@ Proof.
2424
apply Monad_Mor_μ.
2525
Qed.
2626

27-
Definition monad_mor_to_lmodule {C : precategory} {R S : Monad C}
27+
Definition monad_mor_to_lmodule {C : category} {R S : Monad C}
2828
(f : Monad_Mor R S) : LModule_Mor R (tautological_LModule R) (pb_LModule f (tautological_LModule S))
29-
:= (f : nat_trans _ _) ,, monad_mor_to_lmodule_law f.
29+
:= (f : nat_trans _ _) ,, monad_mor_to_lmodule_law f.

Modules/Prelims/LModulesCoproducts.v

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -144,7 +144,7 @@ Section ColimsModule.
144144
use unique_exists.
145145
- exact (LModule_coproductArrow cc).
146146
- intro v.
147-
apply LModule_Mor_equiv;[exact C|].
147+
apply LModule_Mor_equiv.
148148
apply (CoproductInCommutes _ _ _ (cpFunc d')).
149149
- intro y.
150150
cbn -[isaprop].
@@ -153,7 +153,7 @@ Section ColimsModule.
153153
use has_homsets_LModule.
154154
- cbn.
155155
intros y h.
156-
apply LModule_Mor_equiv;[exact C|].
156+
apply LModule_Mor_equiv.
157157
apply (CoproductArrowUnique _ _ _ (cpFunc d')).
158158
intro u.
159159
exact ( maponpaths pr1 (h u)).

Modules/Prelims/LModulesFibration.v

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ Proof.
4848
apply pb_LModule_id_iso.
4949
- intros x y z f g xx yy zz ff gg.
5050
set (pbm_g := pb_LModule_Mor f gg).
51-
set (pbm_gf := (LModule_composition _ pbm_g (morphism_from_iso (pb_LModule_comp_iso f g _ _)))).
51+
set (pbm_gf := (LModule_composition _ pbm_g (morphism_from_iso (pb_LModule_comp_iso f g _)))).
5252
simpl in ff.
5353
exact (compose (C:=category_LModule _ _ ) ff pbm_gf).
5454
Defined.
@@ -75,7 +75,7 @@ Proof.
7575
repeat apply tpair; intros; try apply homset_property.
7676
- simpl.
7777
unfold id_disp; simpl.
78-
apply (invmap ((@LModule_Mor_equiv _ x _ (homset_property D) _ _ _ _ ))).
78+
apply (invmap ((@LModule_Mor_equiv _ x _ _ _ _ _))).
7979
apply nat_trans_eq; try apply homset_property.
8080
intros c; simpl.
8181
simpl.
@@ -84,7 +84,7 @@ Proof.
8484
etrans; [apply bmod_transport |].
8585
rewrite id_right,id_left; apply idpath.
8686
- set (heqf := id_right f).
87-
apply (invmap ((@LModule_Mor_equiv _ x _ (homset_property D) _ _ _ _ ))).
87+
apply (invmap ((@LModule_Mor_equiv _ x _ _ _ _ _))).
8888
apply nat_trans_eq; try apply homset_property.
8989
simpl.
9090
intros c.
@@ -94,7 +94,7 @@ Proof.
9494
intros; simpl.
9595
reflexivity.
9696
- set (heqf:= assoc f g h).
97-
apply (invmap ((@LModule_Mor_equiv _ x _ (homset_property D) _ _ _ _ ))).
97+
apply (invmap ((@LModule_Mor_equiv _ x _ _ _ _ _))).
9898
apply nat_trans_eq; try apply homset_property.
9999
intros c; simpl.
100100
apply pathsinv0.
@@ -118,9 +118,9 @@ Proof.
118118
cbn in *.
119119
use unique_exists.
120120
* use (LModule_composition R'' a).
121-
exact ( inv_from_iso (pb_LModule_comp_iso (C := D) f' f M _)).
121+
exact ( inv_from_iso (pb_LModule_comp_iso (C := D) f' f M)).
122122
* hnf.
123-
apply (invmap ((@LModule_Mor_equiv _ _ _ (homset_property D) _ _ _ _ ))).
123+
apply (invmap ((@LModule_Mor_equiv _ _ _ _ _ _ _ ))).
124124
cbn.
125125
apply nat_trans_eq. { apply homset_property. }
126126
intro c. cbn.
@@ -129,10 +129,10 @@ Proof.
129129
apply (has_homsets_LModule).
130130
* intros s Hs.
131131
hnf in Hs.
132-
apply (invmap ((@LModule_Mor_equiv _ _ _ (homset_property D) _ _ _ _ ))).
132+
apply (invmap ((@LModule_Mor_equiv _ _ _ _ _ _ _ ))).
133133
apply nat_trans_eq. { apply homset_property. }
134134
intro c. cbn.
135-
apply (((@LModule_Mor_equiv _ _ _ (homset_property D) _ _ _ _ ))) in Hs.
135+
apply (((@LModule_Mor_equiv _ _ _ _ _ _ _ ))) in Hs.
136136
set (XR := nat_trans_eq_pointwise Hs c). cbn in XR.
137137
repeat rewrite id_right in XR.
138138
repeat rewrite id_right.

Modules/Prelims/deriveadj.v

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -324,7 +324,7 @@ et on utilise les 2 lois de monades
324324
Proof.
325325
intros M M' m.
326326
simpl in M,M',m.
327-
apply LModule_Mor_equiv;[exact hsS|].
327+
apply LModule_Mor_equiv.
328328
apply nat_trans_eq;[exact hsS|].
329329
intro X.
330330
apply funextfun.
@@ -495,7 +495,7 @@ R(T+RX) -------> RR(T+X)
495495
deriv_counit_data.
496496
Proof.
497497
intros M N m.
498-
apply LModule_Mor_equiv;[exact hsC|].
498+
apply LModule_Mor_equiv.
499499
apply nat_trans_eq;[exact hsC|].
500500
intro x.
501501
unfold compose.
@@ -566,7 +566,7 @@ Section derivadj.
566566
split.
567567
- intro M.
568568
cbn in M.
569-
apply LModule_Mor_equiv;[exact hsS|].
569+
apply LModule_Mor_equiv.
570570
apply nat_trans_eq;[exact hsS|].
571571
intro X.
572572
cbn -[isasetcoprod].
@@ -603,7 +603,7 @@ Section derivadj.
603603
apply (Monad_law1 (T := R)).
604604
- intro M.
605605
cbn in M.
606-
apply LModule_Mor_equiv;[exact hsS|].
606+
apply LModule_Mor_equiv.
607607
apply nat_trans_eq;[exact hsS|].
608608
intro X.
609609
cbn -[isasetcoprod].
@@ -750,7 +750,7 @@ Local Lemma adj_law1 : (∏ (R S : Monad SET) (f : Monad_Mor R S) (M N : LModule
750750
(tautological_LModule R), N ⟧) · v).
751751
Proof.
752752
intros R S f M N A u v.
753-
apply LModule_Mor_equiv;[apply (homset_property SET)|].
753+
apply LModule_Mor_equiv.
754754
apply nat_trans_eq;[apply (homset_property SET)|].
755755
intros X.
756756
apply funextfun.
@@ -803,7 +803,7 @@ Local Lemma adj_law2 :
803803
pb_LModule_Mor f ((adj1 S A B) v)).
804804
Proof.
805805
intros.
806-
apply LModule_Mor_equiv;[apply (homset_property SET)|].
806+
apply LModule_Mor_equiv.
807807
apply nat_trans_eq;[apply (homset_property SET)|].
808808
intro X.
809809
cbn -[isasetcoprod].

Modules/Signatures/EpiArePointwise.v

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ Section pwEpiAr.
4343
intros x y z e.
4444
apply signature_Mor_eq.
4545
intro R.
46-
apply LModule_Mor_equiv;[apply homset_property|].
46+
apply LModule_Mor_equiv.
4747
apply hepi.
4848
exact (maponpaths (T1 := signature_Mor _ _) (fun z => (z R : nat_trans _ _)) e).
4949
Qed.
@@ -112,7 +112,7 @@ Proof.
112112
cbn in f,g.
113113
apply signature_Mor_eq.
114114
intro R.
115-
apply LModule_Mor_equiv; [apply homset_property|].
115+
apply LModule_Mor_equiv.
116116
apply epiF.
117117
exact (maponpaths (T1 := signature_Mor _ _) (fun h => pr1 (h R)) eqf).
118118
Qed.

Modules/Signatures/EpiSigRepresentability.v

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -521,7 +521,6 @@ Proof.
521521
apply LModule_Mor_equiv in h.
522522
eapply nat_trans_eq_pointwise in h.
523523
apply h.
524-
apply homset_property.
525524
etrans;revgoals.
526525
etrans;[|apply assoc].
527526
apply cancel_precomposition.

Modules/Signatures/HssSignatureCommutation.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,7 @@ Section GenericStrat.
8585
iso (C := category_LModule R _)
8686
(S1 R)
8787
( S2 R) :=
88-
LModule_same_func_iso _ _ (m12_eq _) _.
88+
LModule_same_func_iso _ _ (m12_eq _).
8989

9090

9191
Hypothesis (Sf12_eq : ∏ R S f c, (Sf2 R S f c) = (Sf1 R S f c) ).

0 commit comments

Comments
 (0)