Skip to content

Commit 70ab337

Browse files
Merge pull request #151 from rmatthes/followupstreamPR1829
restores compilation after UniMath PR1829
2 parents b6943b9 + bf2e3e4 commit 70ab337

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

Modules/Prelims/EpiComplements.v

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -175,7 +175,7 @@ Lemma isEpi_horcomp_pw (B : category)(C D : category)
175175
(G H : functor B C) (G' H' : functor C D)
176176
(f : nat_trans G H) (f':nat_trans G' H')
177177
: (∏ x, isEpi (f' x))
178-
-> (∏ x, isEpi ((# H')%Cat (f x)))
178+
-> (∏ x, isEpi ((# H') (f x)))
179179
-> ∏ x, isEpi (horcomp f f' x).
180180
Proof.
181181
intros epif' epif.
@@ -189,7 +189,7 @@ Lemma isEpi_horcomp_pw2 (B : category)(C D : category)
189189
(G H : functor B C) (G' H' : functor C D)
190190
(f : nat_trans G H) (f':nat_trans G' H')
191191
: (∏ x, isEpi (f' x))
192-
-> (∏ x, isEpi ((# G')%Cat (f x)))
192+
-> (∏ x, isEpi ((# G') (f x)))
193193
-> ∏ x, isEpi (horcomp f f' x).
194194
Proof.
195195
intros epif epif'.
@@ -211,7 +211,7 @@ If the source category B is Set, then with the axiom of choice every epimorphism
211211
thus absolute (i.e. any functor preserves epis).
212212
*)
213213
Definition preserves_Epi {B C : precategory} (F : functor B C) : UU :=
214-
∏ a b (f : B ⟦a , b⟧), isEpi f -> isEpi (# F f)%Cat.
214+
∏ a b (f : B ⟦a , b⟧), isEpi f -> isEpi (# F f).
215215

216216
(** Functor from Set preserves epimorphisms because thanks to the axiom of choice, any
217217
set epimorphism is absolute *)

Modules/Prelims/lib.v

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -137,9 +137,9 @@ Qed.
137137

138138
(** Same as [nat_trans_comp_pointwise], but with B = A · A' *)
139139
Definition nat_trans_comp_pointwise' :
140-
∏ (C : precategory) (C' : category) (F G H : ([C, C' , _ ])%Cat)
141-
(A : ([C, C' , _] ⟦ F, G ⟧)%Cat) (A' : ([C, C' , _] ⟦ G, H ⟧)%Cat) (a : C),
142-
((A : nat_trans _ _) a · (A' : nat_trans _ _) a)%Cat = (A · A' : nat_trans _ _)%Cat a
140+
∏ (C : precategory) (C' : category) (F G H : ([C, C' , _ ]))
141+
(A : ([C, C' , _] ⟦ F, G ⟧)) (A' : ([C, C' , _] ⟦ G, H ⟧)) (a : C),
142+
((A : nat_trans _ _) a · (A' : nat_trans _ _) a) = (A · A' : nat_trans _ _) a
143143
:=
144144
fun C C' F G H A A' => @nat_trans_comp_pointwise C C' (homset_property C') F G H A A' _ (idpath _).
145145

0 commit comments

Comments
 (0)