@@ -73,7 +73,7 @@ Lemma isaset_rep_fiber_mor {a : SIG} (M N : model a) :
7373Proof .
7474 intros.
7575 apply isaset_total2 .
76- - apply has_homsets_Monad .
76+ - apply isaset_Monad_Mor .
7777 - intros.
7878 apply isasetaprop.
7979 apply isaprop_rep_fiber_mor_law.
@@ -99,14 +99,14 @@ Proof.
9999 use (invmap (subtypeInjectivity _ _ _ _ )).
100100 - intro g.
101101 apply isaprop_rep_fiber_mor_law.
102- - use (invmap (Monad_Mor_equiv _ _ _ )).
102+ - use (invmap (Monad_Mor_equiv _ _)).
103103 + assumption.
104104Qed .
105105
106106(** If two 1-model morphisms are pointwise equal, then they are equal *)
107107Lemma rep_fiber_mor_eq {a : SIG} (R S:model a)
108108 (u v: rep_fiber_mor R S) :
109- (∏ c, pr1 (pr1 u) c = pr1 (pr1 v) c) -> u = v.
109+ (∏ c, pr1 u c = pr1 v c) -> u = v.
110110Proof .
111111 intros.
112112 apply rep_fiber_mor_eq_nt.
@@ -407,8 +407,8 @@ M (M + Id) ---------> M R --------> M
407407 Defined .
408408
409409 (** Data for the (M + Id) monad *)
410- Definition mod_id_monad_data : Monad_data C :=
411- ((IdM ,, mod_id_μ) ,, mod_id_η).
410+ Definition mod_id_monad_data : disp_Monad_data IdM :=
411+ (mod_id_μ ,, mod_id_η).
412412
413413 Local Infix "++f" := (BinCoproductOfArrows _ _ _) (at level 6).
414414 Local Notation "[[ f , g ]]" := (BinCoproductArrow _ f g).
@@ -506,7 +506,7 @@ M (M + Id) ---------> M R --------> M
506506
507507
508508 (** Monad laws for (M + Id) *)
509- Lemma mod_id_monad_laws : Monad_laws mod_id_monad_data.
509+ Lemma mod_id_monad_laws : disp_Monad_laws mod_id_monad_data.
510510 Proof .
511511 repeat split.
512512 - intro c.
@@ -584,7 +584,7 @@ M (M + Id) ---------> M R --------> M
584584
585585
586586 (** The M + Id monad *)
587- Definition mod_id_monad : Monad C := _ ,, mod_id_monad_laws.
587+ Definition mod_id_monad : Monad C := _ ,, _ ,, mod_id_monad_laws.
588588
589589 (** The morphism M + Id --> R is a monad morphism *)
590590 Lemma mod_id_monad_mor_laws : Monad_Mor_laws (T := mod_id_monad) mod_id_nt.
0 commit comments