Skip to content

Commit f7b0b31

Browse files
Merge pull request #152 from arnoudvanderleer/rename-category-packages
Update references to category packages
2 parents 70ab337 + 1c51541 commit f7b0b31

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

53 files changed

+721
-721
lines changed

Modules/NonRawSignatures/FullArToRaw.v

Lines changed: 31 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -35,13 +35,13 @@ Require Import Modules.Signatures.HArityDerivation.
3535
(* Require Import Modules.Signatures.CheckCorrespondanceAdjonction. *)
3636
Require Import UniMath.SubstitutionSystems.BindingSigToMonad.
3737

38-
Require Import UniMath.CategoryTheory.categories.category_hset.
38+
Require Import UniMath.CategoryTheory.Categories.category_hset.
3939

40-
Require Import UniMath.CategoryTheory.categories.category_hset_structures.
41-
Require Import UniMath.CategoryTheory.limits.coproducts.
42-
Require Import UniMath.CategoryTheory.limits.binproducts.
43-
Require Import UniMath.CategoryTheory.limits.bincoproducts.
44-
Require Import UniMath.CategoryTheory.limits.terminal.
40+
Require Import UniMath.CategoryTheory.Categories.category_hset_structures.
41+
Require Import UniMath.CategoryTheory.Limits.Coproducts.
42+
Require Import UniMath.CategoryTheory.Limits.BinProducts.
43+
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
44+
Require Import UniMath.CategoryTheory.Limits.Terminal.
4545

4646
Require Import Modules.Prelims.deriveadj.
4747

@@ -71,7 +71,7 @@ Section CoBindingArity.
7171
(** Content of this section:
7272
- translate a natural number into a half-arity
7373
*)
74-
74+
7575
Fixpoint nat_deriv_HAr {C : category} bcp T (n :nat) : arity C :=
7676
match n with
7777
0 => tautological_harity
@@ -88,15 +88,15 @@ Definition nat_prod_HAr {C : category} (bp : BinProducts C) (n : nat) : arity C
8888
iter_functor (prodHAr bp) n tautological_harity.
8989

9090
Definition CoBinding_to_FullArity {C : category} bcp T ( a : HAr.arity C)
91-
(n : nat)
91+
(n : nat)
9292
: FullArity C
9393
:= a ,, nat_deriv_HAr bcp T n.
9494

9595
Context {C : category} .
9696
Hypothesis ( bp : BinProducts C).
9797
Let bpHAr := harity_BinProducts (C := C) bp.
9898
Local Notation BPO := (BinProductObject _).
99-
99+
100100
(* Let prodHAr := *)
101101
(* (functor_fix_snd_arg _ _ _ (binproduct_functor (harity_BinProducts bp )) *)
102102
(* (tautological_harity)). *)
@@ -105,7 +105,7 @@ Local Notation BPO := (BinProductObject _).
105105
(* iter_functor prodHAr n a. *)
106106

107107
(** Input: an arity [a] and a natural number
108-
Output: [a × θ × θ × ... × θ]
108+
Output: [a × θ × θ × ... × θ]
109109
*)
110110
Fixpoint DeBind_HArity (a : HAr.arity C) (n : nat) : HAr.arity C :=
111111
match n with
@@ -155,13 +155,13 @@ Section NoSetGenNat.
155155
(* Local Notation "×ℜ" := (bpM. *)
156156
Local Notation Θ := (tautological_LModule).
157157

158-
Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
158+
Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
159159
: ∏ M, iso (C := MOD R) (pb_LModule f (M ')) ((pb_LModule f M) ')
160160
:=
161161
pb_deriv_to_deriv_pb_iso Tset bcp (D := C) f.
162162

163-
Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
164-
: ∏ M N, iso (C := MOD R)
163+
Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
164+
: ∏ M N, iso (C := MOD R)
165165
(bpM _ (pb_LModule f M)(pb_LModule f N) )
166166
(pb_LModule f (bpM _ M N))
167167
:=
@@ -240,15 +240,15 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
240240
Let c_n n : HalfArity := DeBind_HArity bp a n.
241241
Let d_n n : FullArity C := c_n n ,, tautological_harity.
242242

243-
Definition equiv_is_rep_ar_one_to_raw (a' : HalfArity) n R :
243+
Definition equiv_is_rep_ar_one_to_raw (a' : HalfArity) n R :
244244
LModule_Mor R (a' R)(nat_d_HAr (S n) R) ≃
245245
LModule_Mor R (BPO (LMOD_bp R (a' R) (tautological_LModule R)))
246246
(nat_d_HAr n R).
247247
Proof.
248248
apply adj1.
249249
Defined.
250250

251-
Definition equiv_is_rep_ar_to_raw (a' : HalfArity) n R :
251+
Definition equiv_is_rep_ar_to_raw (a' : HalfArity) n R :
252252
LModule_Mor R (a' R)( nat_d_HAr n R) ≃
253253
LModule_Mor R ((DeBind_HArity bp a' n : HAr.arity _) R)
254254
(tautological_LModule R).
@@ -357,7 +357,7 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
357357
apply (transport_arity_mor _ _ _ _ _ e xx yy ff).
358358
Defined.
359359
360-
360+
361361
Definition FAr_to_HAr_one_functor n : (rep_disp C)[{a_n (S n)}] ⟶ (rep_disp C)[{b_n n}] :=
362362
_ ,, FAr_to_HAr_one_is_functor n.
363363
@@ -371,7 +371,7 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
371371
End NoSetGenNat.
372372

373373
Section FAR_ToHAR_Rep.
374-
374+
375375
Context {C : category}.
376376
Hypothesis ( bp : BinProducts C).
377377
Hypothesis ( bcp : BinCoproducts C).
@@ -401,13 +401,13 @@ Section FAR_ToHAR_Rep.
401401
(* Local Notation "×ℜ" := (bpM. *)
402402
Local Notation Θ := (tautological_LModule).
403403

404-
Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
404+
Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
405405
: ∏ M, iso (C := MOD R) (pb_LModule f (M ')) ((pb_LModule f M) ')
406406
:=
407407
pb_deriv_to_deriv_pb_iso Tset bcp (D := C) f.
408408

409-
Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
410-
: ∏ M N, iso (C := MOD R)
409+
Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
410+
: ∏ M N, iso (C := MOD R)
411411
(bpM _ (pb_LModule f M)(pb_LModule f N) )
412412
(pb_LModule f (bpM _ M N))
413413
:=
@@ -438,7 +438,7 @@ Par l'adjonction ça doit devenir
438438
M x R ----> N --------> f*A
439439
440440
*)
441-
441+
442442
Hypothesis adj_law1 :
443443
∏ R S (f : Monad_Mor (C := C) R S)
444444
(M N : LModule R _) (A : LModule S _)
@@ -520,7 +520,7 @@ Section NoSet.
520520
Lemma HAr_rep_ar_mor_law_nt {a b : HAr.arity _} (M : HAr.rep_ar _ a)
521521
(N : HAr.rep_ar _ b)
522522
(f : arity_Mor a b) (g : Monad_Mor M N) :
523-
HAr.rep_ar_mor_law _ M N f g ≃
523+
HAr.rep_ar_mor_law _ M N f g ≃
524524
((HAr.rep_τ _ M : (MOD _ ⟦_,_⟧)) · (monad_mor_to_lmodule g) =
525525
((#a g)%ar : MOD _ ⟦_,_⟧) ·
526526
pb_LModule_Mor g
@@ -546,12 +546,12 @@ Section NoSet.
546546
547547
(*inutile TODO suppriemr *)
548548
Definition FAr_rep_ar_mor_law_nt {a b : FullArity C} (M : rep_ar _ a) (N : rep_ar _ b)
549-
(f : FullArity C ⟦ a, b⟧) (g : Monad_Mor M N) :
549+
(f : FullArity C ⟦ a, b⟧) (g : Monad_Mor M N) :
550550
rep_ar_mor_law C M N f g ≃ (
551551
(rep_τ _ M : MOD _ ⟦_ , _⟧) · ((#(codom a) g)%ar) =
552552
((#(dom a) g)%ar : MOD _ ⟦_ , _⟧) · pb_LModule_Mor g (dom_mor f N) ·
553553
pb_LModule_Mor g (rep_τ _ N) ·
554-
pb_LModule_Mor g (codom_mor f N)
554+
pb_LModule_Mor g (codom_mor f N)
555555
).
556556
Proof.
557557
apply weqinvweq.
@@ -630,7 +630,7 @@ Defined.
630630
Local Notation BPO := (BinProductObject _).
631631
Let b n : HalfArity := BPO (bpHAr a (nat_p_HAr n)).
632632
633-
Definition equiv_is_rep_ar_to_raw R :
633+
Definition equiv_is_rep_ar_to_raw R :
634634
LModule_Mor R (a R)(nat_d_HAr 1 R) ≃
635635
LModule_Mor R (b 1 R)(tautological_LModule R).
636636
Proof.
@@ -664,13 +664,13 @@ Defined.
664664
(* rep_ar_mor_law M N f g ≃ (rep_τ M : nat_trans _ _) · ((#(codom a) g)%ar:nat_trans _ _) = *)
665665
(* ((#(dom a) g)%ar:nat_trans _ _) · dom_mor f N · *)
666666
(* rep_τ N c · codom_mor f N c. *)
667-
Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
667+
Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
668668
: ∏ M, iso (C := MOD R) (pb_LModule f (M ')) ((pb_LModule f M) ')
669669
:=
670670
pb_deriv_to_deriv_pb_iso Tset bcp (D := C) f.
671671
672-
Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
673-
: ∏ M N, iso (C := MOD R)
672+
Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
673+
: ∏ M N, iso (C := MOD R)
674674
(bpM _ (pb_LModule f M)(pb_LModule f N) )
675675
(pb_LModule f (bpM _ M N))
676676
:=
@@ -720,7 +720,7 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
720720
· pb_LModule_Mor f (adj1 _ _ _ v)
721721
722722
(* (# ×ℜ (dirprodpair (u : MOD R ⟦_,_⟧) (monad_mor_to_lmodule f : MOD R ⟦_,_⟧))) *)
723-
723+
724724
725725
(* adj1 R _ _ ((u : MOD R ⟦_,_⟧) · (pb_LModule_Mor f v) · deriv_pb_iso f _) *)
726726
).
@@ -750,7 +750,7 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
750750
apply idweq.
751751
Qed.
752752
753-
Definition equiv_raw_ar_mor_law
753+
Definition equiv_raw_ar_mor_law
754754
{R S : rep_ar _ (a_n 1)} (f : Monad_Mor R S) :
755755
rep_ar_mor_law _ R S (identity _) f ≃
756756
HAr.rep_ar_mor_law _ (Fob R) (Fob S)
@@ -811,6 +811,6 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
811811
Definition iso_FAr_HAr_rep : catiso _ _ :=
812812
FS,, (λ x y , weqproperty (Fmor x y)),, weqproperty Fob.
813813
End NoSet.
814-
814+
815815
816816
*)

Modules/NonRawSignatures/HArityCoproductFromColims.v

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -17,8 +17,8 @@ Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
1717
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
1818
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
1919

20-
Require Import UniMath.CategoryTheory.limits.coproducts.
21-
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
20+
Require Import UniMath.CategoryTheory.Limits.Coproducts.
21+
Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits.
2222

2323
Require Import Modules.Prelims.lib.
2424
Require Import Modules.Prelims.modules.
@@ -110,7 +110,7 @@ Section pullback_coprod.
110110
etrans;[apply assoc|].
111111

112112
etrans;[apply id_left|apply id_right].
113-
113+
114114
Definition coprod_pbm_to_pbm_coprod : LModule_Mor _ coprod_pbm pbm_coprod.
115115
use tpair.
116116
- use tpair
@@ -150,4 +150,4 @@ Section Coprod.
150150
: arity_on_morphisms (R : Monad C) : LModule R C :=
151151
CoproductObject _ _ (LModule_coproducts_from_Colims R (fun o => α o R)).
152152

153-
Definition harity_coprod : HalfSignature.
153+
Definition harity_coprod : HalfSignature.

Modules/NonRawSignatures/PresentableRawSig.v

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -14,8 +14,8 @@ Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
1414
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
1515
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
1616

17-
Require Import UniMath.CategoryTheory.limits.coproducts.
18-
Require Import UniMath.CategoryTheory.limits.initial.
17+
Require Import UniMath.CategoryTheory.Limits.Coproducts.
18+
Require Import UniMath.CategoryTheory.Limits.Initial.
1919

2020
Require Import Modules.Prelims.lib.
2121
Require Import Modules.Prelims.modules.
@@ -29,9 +29,9 @@ Require Import Modules.Signatures.RawSigToHAr.
2929
Require Import Modules.Signatures.PresentableHArityCoproducts.
3030
Require Import Modules.Signatures.PresentableArity.
3131
Require Modules.Signatures.FullSignatures.
32-
Require Import UniMath.CategoryTheory.categories.category_hset.
32+
Require Import UniMath.CategoryTheory.Categories.category_hset.
3333

34-
Require Import UniMath.CategoryTheory.categories.category_hset_structures.
34+
Require Import UniMath.CategoryTheory.Categories.category_hset_structures.
3535
Module FAr := FullSignatures.
3636

3737
Section RawSigRep.
@@ -54,14 +54,14 @@ Local Notation EndSet := [hset_category, hset_category].
5454

5555
(** This uses univalence to transform an isomorphism of category into an equality
5656
Another proof could be used without univalence though
57-
57+
5858
*)
5959
Lemma initial_presentable_raw_sig (ax: AxiomOfChoice.AxiomOfChoice_surj): Initial (precategory_rep_sig (rawSigToSig rawsig)).
6060
Proof.
6161
eapply (transportb (fun X => Initial X)).
6262
apply catiso_to_precategory_path.
6363
- intros ? ? .
64-
apply isaset_rep_a_sig_mor.
64+
apply isaset_rep_a_sig_mor.
6565
- unshelve apply iso_a_sig_har_rep.
6666
apply cp.
6767
apply setproperty.

Modules/NonRawSignatures/PresentableSig.v

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -14,8 +14,8 @@ Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
1414
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
1515
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
1616

17-
Require Import UniMath.CategoryTheory.limits.coproducts.
18-
Require Import UniMath.CategoryTheory.limits.initial.
17+
Require Import UniMath.CategoryTheory.Limits.Coproducts.
18+
Require Import UniMath.CategoryTheory.Limits.Initial.
1919
Require Import UniMath.CategoryTheory.EpiFacts.
2020
Require Import UniMath.CategoryTheory.Epis.
2121

@@ -38,9 +38,9 @@ Require Modules.Signatures.FullSignatures.
3838
Require Import Modules.Signatures.FullArToRaw.
3939
Require Import Modules.Signatures.SigEquivRep.
4040
Require Import Modules.Prelims.SetCatComplements.
41-
Require Import UniMath.CategoryTheory.categories.category_hset.
41+
Require Import UniMath.CategoryTheory.Categories.category_hset.
4242

43-
Require Import UniMath.CategoryTheory.categories.category_hset_structures.
43+
Require Import UniMath.CategoryTheory.Categories.category_hset_structures.
4444
Module FAr := FullSignatures.
4545

4646
Section RawSigRep.
@@ -63,17 +63,17 @@ Local Notation bpSET := BinProductsHSET.
6363
: hSet := pr1 S.
6464
Local Notation O := base_of_pres_sig.
6565

66-
Definition ar_of_pres_sig
66+
Definition ar_of_pres_sig
6767
{C} {bpC} {bcpC} {Tc} {cpC}
6868
(S : PresentableSignature (C:=C)bpC bcpC Tc cpC)
6969
: O S -> arity C := fun o => (pr1 (pr1 (pr2 S o))).
70-
Definition ar_of_pres_sig_isPresentable
70+
Definition ar_of_pres_sig_isPresentable
7171
{C} {bpC} {bcpC} {Tc} {cpC}
7272
(S : PresentableSignature (C:=C)bpC bcpC Tc cpC)
7373
: ∏ o, isPresentable bpC bcpC Tc cpC (ar_of_pres_sig S o):= fun o => (pr2 (pr1 (pr2 S o))).
7474

7575
Local Notation α := ar_of_pres_sig.
76-
Definition nat_of_pres_sig
76+
Definition nat_of_pres_sig
7777
{C} {bpC} {bcpC} {Tc} {cpC}
7878
(S : PresentableSignature (C:=C)bpC bcpC Tc cpC)
7979
: O S -> nat := fun o => ( (pr2 (pr2 S o))).
@@ -104,7 +104,7 @@ Import FullSignatures.
104104

105105
(** This uses univalence to transform an isomorphism of category into an equality
106106
Another proof could be used without univalence though
107-
(@DeBind_HArity SET bpSET a n',, @tautological_harity SET)
107+
(@DeBind_HArity SET bpSET a n',, @tautological_harity SET)
108108
(@DeBind_HArity SET bpSET a n',, @tautological_harity SET)
109109
*)
110110

@@ -160,14 +160,14 @@ Lemma initial_presentable_raw_sig sig (ax: AxiomOfChoice.AxiomOfChoice_surj) :
160160
(PresentableSignature_to_signature (C:=SET) bp bcp T
161161
(fun I => cp _ (setproperty I)) sig)).
162162
Proof.
163-
set (sig' := PresentableSignature_to_signature _ _ _ _ sig).
163+
set (sig' := PresentableSignature_to_signature _ _ _ _ sig).
164164
eapply (transportb (fun X => Initial X)).
165165
apply catiso_to_precategory_path.
166166
- intros ? ? .
167-
apply isaset_rep_a_sig_mor.
167+
apply isaset_rep_a_sig_mor.
168168
- exact (catiso_Presentable_Raw sig).
169169
- (* This is a presentable raw signature, so it is representable *)
170-
set (rawS :=
170+
set (rawS :=
171171
tpair (T := hSet) (fun z => z -> arity _)
172172
(O sig)
173173
(λ o : O sig, DeBind_HArity (C := SET) bpSET (α _ o) (nat_of_pres_sig _ o)) : rawSig).

Modules/NonRawSignatures/RawSigToHAr.v

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
3131
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
3232
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
3333

34-
Require Import UniMath.CategoryTheory.limits.coproducts.
34+
Require Import UniMath.CategoryTheory.Limits.Coproducts.
3535

3636
Require Import Modules.Prelims.lib.
3737
Require Import Modules.Prelims.modules.
@@ -74,7 +74,7 @@ Check ((fun a => idpath _): ∏ a, (rep_ar C a) = (FAr.rep_ar C (toAr a))).
7474

7575

7676
(* useless *)
77-
Lemma half_arity_to_arity_is_rep_weq (a : HalfArity) (M N : rep_ar C a) f :
77+
Lemma half_arity_to_arity_is_rep_weq (a : HalfArity) (M N : rep_ar C a) f :
7878
FAr.rep_ar_mor_law C (a := toAr a) (b:=toAr a) M N (identity _) f
7979
8080
rep_ar_mor_law C (a := a) (b:= a) M N (identity (C := arity_category) _) f.
@@ -150,7 +150,7 @@ Definition sig_to_har_rep_on_mor_weq (R S : a_sig_rep) : a_sig_rep ⟦ R , S ⟧
150150
split.
151151
+ intro h .
152152
intro x.
153-
153+
154154
cbn.
155155
unfold coproduct_nat_trans_data.
156156
repeat rewrite id_right.

0 commit comments

Comments
 (0)