@@ -35,13 +35,13 @@ Require Import Modules.Signatures.HArityDerivation.
3535(* Require Import Modules.Signatures.CheckCorrespondanceAdjonction. *)
3636Require Import UniMath.SubstitutionSystems.BindingSigToMonad.
3737
38- Require Import UniMath.CategoryTheory.categories .category_hset.
38+ Require Import UniMath.CategoryTheory.Categories .category_hset.
3939
40- Require Import UniMath.CategoryTheory.categories .category_hset_structures.
41- Require Import UniMath.CategoryTheory.limits.coproducts .
42- Require Import UniMath.CategoryTheory.limits.binproducts .
43- Require Import UniMath.CategoryTheory.limits.bincoproducts .
44- Require Import UniMath.CategoryTheory.limits.terminal .
40+ Require Import UniMath.CategoryTheory.Categories .category_hset_structures.
41+ Require Import UniMath.CategoryTheory.Limits.Coproducts .
42+ Require Import UniMath.CategoryTheory.Limits.BinProducts .
43+ Require Import UniMath.CategoryTheory.Limits.BinCoproducts .
44+ Require Import UniMath.CategoryTheory.Limits.Terminal .
4545
4646Require Import Modules .Prelims.deriveadj.
4747
@@ -71,7 +71,7 @@ Section CoBindingArity.
7171(** Content of this section:
7272 - translate a natural number into a half-arity
7373 *)
74-
74+
7575Fixpoint nat_deriv_HAr {C : category} bcp T (n :nat) : arity C :=
7676 match n with
7777 0 => tautological_harity
@@ -88,15 +88,15 @@ Definition nat_prod_HAr {C : category} (bp : BinProducts C) (n : nat) : arity C
8888 iter_functor (prodHAr bp) n tautological_harity.
8989
9090Definition CoBinding_to_FullArity {C : category} bcp T ( a : HAr.arity C)
91- (n : nat)
91+ (n : nat)
9292 : FullArity C
9393 := a ,, nat_deriv_HAr bcp T n.
9494
9595Context {C : category} .
9696Hypothesis ( bp : BinProducts C).
9797Let bpHAr := harity_BinProducts (C := C) bp.
9898Local Notation BPO := (BinProductObject _).
99-
99+
100100 (* Let prodHAr := *)
101101 (* (functor_fix_snd_arg _ _ _ (binproduct_functor (harity_BinProducts bp )) *)
102102 (* (tautological_harity)). *)
@@ -105,7 +105,7 @@ Local Notation BPO := (BinProductObject _).
105105(* iter_functor prodHAr n a. *)
106106
107107(** Input: an arity [a] and a natural number
108- Output: [a × θ × θ × ... × θ]
108+ Output: [a × θ × θ × ... × θ]
109109 *)
110110Fixpoint DeBind_HArity (a : HAr.arity C) (n : nat) : HAr.arity C :=
111111 match n with
@@ -155,13 +155,13 @@ Section NoSetGenNat.
155155 (* Local Notation "×ℜ" := (bpM. *)
156156 Local Notation Θ := (tautological_LModule).
157157
158- Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
158+ Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
159159 : ∏ M, iso (C := MOD R) (pb_LModule f (M ')) ((pb_LModule f M) ')
160160 :=
161161 pb_deriv_to_deriv_pb_iso Tset bcp (D := C) f.
162162
163- Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
164- : ∏ M N, iso (C := MOD R)
163+ Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
164+ : ∏ M N, iso (C := MOD R)
165165 (bpM _ (pb_LModule f M)(pb_LModule f N) )
166166 (pb_LModule f (bpM _ M N))
167167 :=
@@ -240,15 +240,15 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
240240 Let c_n n : HalfArity := DeBind_HArity bp a n.
241241 Let d_n n : FullArity C := c_n n ,, tautological_harity.
242242
243- Definition equiv_is_rep_ar_one_to_raw (a' : HalfArity) n R :
243+ Definition equiv_is_rep_ar_one_to_raw (a' : HalfArity) n R :
244244 LModule_Mor R (a' R)(nat_d_HAr (S n) R) ≃
245245 LModule_Mor R (BPO (LMOD_bp R (a' R) (tautological_LModule R)))
246246 (nat_d_HAr n R).
247247 Proof .
248248 apply adj1.
249249 Defined .
250250
251- Definition equiv_is_rep_ar_to_raw (a' : HalfArity) n R :
251+ Definition equiv_is_rep_ar_to_raw (a' : HalfArity) n R :
252252 LModule_Mor R (a' R)( nat_d_HAr n R) ≃
253253 LModule_Mor R ((DeBind_HArity bp a' n : HAr.arity _) R)
254254 (tautological_LModule R).
@@ -357,7 +357,7 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
357357 apply (transport_arity_mor _ _ _ _ _ e xx yy ff).
358358 Defined.
359359
360-
360+
361361 Definition FAr_to_HAr_one_functor n : (rep_disp C)[{a_n (S n)}] ⟶ (rep_disp C)[{b_n n}] :=
362362 _ ,, FAr_to_HAr_one_is_functor n.
363363
@@ -371,7 +371,7 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
371371End NoSetGenNat.
372372
373373Section FAR_ToHAR_Rep.
374-
374+
375375 Context {C : category}.
376376 Hypothesis ( bp : BinProducts C).
377377 Hypothesis ( bcp : BinCoproducts C).
@@ -401,13 +401,13 @@ Section FAR_ToHAR_Rep.
401401 (* Local Notation "×ℜ" := (bpM. *)
402402 Local Notation Θ := (tautological_LModule).
403403
404- Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
404+ Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
405405 : ∏ M, iso (C := MOD R) (pb_LModule f (M ')) ((pb_LModule f M) ')
406406 :=
407407 pb_deriv_to_deriv_pb_iso Tset bcp (D := C) f.
408408
409- Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
410- : ∏ M N, iso (C := MOD R)
409+ Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
410+ : ∏ M N, iso (C := MOD R)
411411 (bpM _ (pb_LModule f M)(pb_LModule f N) )
412412 (pb_LModule f (bpM _ M N))
413413 :=
@@ -438,7 +438,7 @@ Par l'adjonction ça doit devenir
438438M x R ----> N --------> f*A
439439
440440 *)
441-
441+
442442 Hypothesis adj_law1 :
443443 ∏ R S (f : Monad_Mor (C := C) R S)
444444 (M N : LModule R _) (A : LModule S _)
@@ -520,7 +520,7 @@ Section NoSet.
520520 Lemma HAr_rep_ar_mor_law_nt {a b : HAr.arity _} (M : HAr.rep_ar _ a)
521521 (N : HAr.rep_ar _ b)
522522 (f : arity_Mor a b) (g : Monad_Mor M N) :
523- HAr.rep_ar_mor_law _ M N f g ≃
523+ HAr.rep_ar_mor_law _ M N f g ≃
524524 ((HAr.rep_τ _ M : (MOD _ ⟦_,_⟧)) · (monad_mor_to_lmodule g) =
525525 ((#a g)%ar : MOD _ ⟦_,_⟧) ·
526526 pb_LModule_Mor g
@@ -546,12 +546,12 @@ Section NoSet.
546546
547547 (*inutile TODO suppriemr *)
548548Definition FAr_rep_ar_mor_law_nt {a b : FullArity C} (M : rep_ar _ a) (N : rep_ar _ b)
549- (f : FullArity C ⟦ a, b⟧) (g : Monad_Mor M N) :
549+ (f : FullArity C ⟦ a, b⟧) (g : Monad_Mor M N) :
550550 rep_ar_mor_law C M N f g ≃ (
551551 (rep_τ _ M : MOD _ ⟦_ , _⟧) · ((#(codom a) g)%ar) =
552552 ((#(dom a) g)%ar : MOD _ ⟦_ , _⟧) · pb_LModule_Mor g (dom_mor f N) ·
553553 pb_LModule_Mor g (rep_τ _ N) ·
554- pb_LModule_Mor g (codom_mor f N)
554+ pb_LModule_Mor g (codom_mor f N)
555555 ).
556556Proof.
557557 apply weqinvweq.
@@ -630,7 +630,7 @@ Defined.
630630 Local Notation BPO := (BinProductObject _).
631631 Let b n : HalfArity := BPO (bpHAr a (nat_p_HAr n)).
632632
633- Definition equiv_is_rep_ar_to_raw R :
633+ Definition equiv_is_rep_ar_to_raw R :
634634 LModule_Mor R (a R)(nat_d_HAr 1 R) ≃
635635 LModule_Mor R (b 1 R)(tautological_LModule R).
636636 Proof.
@@ -664,13 +664,13 @@ Defined.
664664(* rep_ar_mor_law M N f g ≃ (rep_τ M : nat_trans _ _) · ((#(codom a) g)%ar:nat_trans _ _) = *)
665665(* ((#(dom a) g)%ar:nat_trans _ _) · dom_mor f N · *)
666666(* rep_τ N c · codom_mor f N c. *)
667- Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
667+ Let deriv_pb_iso {R S : Monad C} (f : Monad_Mor R S)
668668 : ∏ M, iso (C := MOD R) (pb_LModule f (M ')) ((pb_LModule f M) ')
669669 :=
670670 pb_deriv_to_deriv_pb_iso Tset bcp (D := C) f.
671671
672- Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
673- : ∏ M N, iso (C := MOD R)
672+ Let bp_pb_iso {R S : Monad C} (f : Monad_Mor R S)
673+ : ∏ M N, iso (C := MOD R)
674674 (bpM _ (pb_LModule f M)(pb_LModule f N) )
675675 (pb_LModule f (bpM _ M N))
676676 :=
@@ -720,7 +720,7 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
720720 · pb_LModule_Mor f (adj1 _ _ _ v)
721721
722722 (* (# ×ℜ (dirprodpair (u : MOD R ⟦_,_⟧) (monad_mor_to_lmodule f : MOD R ⟦_,_⟧))) *)
723-
723+
724724
725725 (* adj1 R _ _ ((u : MOD R ⟦_,_⟧) · (pb_LModule_Mor f v) · deriv_pb_iso f _) *)
726726 ).
@@ -750,7 +750,7 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
750750 apply idweq.
751751 Qed.
752752
753- Definition equiv_raw_ar_mor_law
753+ Definition equiv_raw_ar_mor_law
754754 {R S : rep_ar _ (a_n 1)} (f : Monad_Mor R S) :
755755 rep_ar_mor_law _ R S (identity _) f ≃
756756 HAr.rep_ar_mor_law _ (Fob R) (Fob S)
@@ -811,6 +811,6 @@ M×R ---------> f* A x f* S ------> f*(A x S) -------> f* B
811811 Definition iso_FAr_HAr_rep : catiso _ _ :=
812812 FS,, (λ x y , weqproperty (Fmor x y)),, weqproperty Fob.
813813End NoSet.
814-
814+
815815
816816 *)
0 commit comments