|
| 1 | +using System; |
| 2 | +using System.Collections.Generic; |
| 3 | +using IntXLib; |
| 4 | + |
| 5 | +namespace ECDH |
| 6 | +{ |
| 7 | + public class CurvePoint |
| 8 | + { |
| 9 | + public static readonly CurvePoint POINT_AT_INFINITY = new CurvePoint(); |
| 10 | + public IntX X { get; private set; } |
| 11 | + public IntX Y { get; private set; } |
| 12 | + private bool pai = false; |
| 13 | + public CurvePoint(IntX x, IntX y) |
| 14 | + { |
| 15 | + X = x; |
| 16 | + Y = y; |
| 17 | + } |
| 18 | + private CurvePoint() { pai = true; } // Accessing corrdinates causes undocumented behaviour |
| 19 | + public override string ToString() |
| 20 | + { |
| 21 | + return pai ? "(POINT_AT_INFINITY)" : "(" + X + ", " + Y + ")"; |
| 22 | + } |
| 23 | + } |
| 24 | + |
| 25 | + public class EllipticCurve |
| 26 | + { |
| 27 | + public enum CurveType { Weierstrass, Montgomery } |
| 28 | + |
| 29 | + protected readonly IntX a, b, modulo; |
| 30 | + protected readonly CurveType type; |
| 31 | + |
| 32 | + public EllipticCurve(IntX a, IntX b, IntX modulo, CurveType type = CurveType.Weierstrass) |
| 33 | + { |
| 34 | + if ( |
| 35 | + (type==CurveType.Weierstrass && (4 * a * a * a) + (27 * b * b) == 0) || // Unfavourable Weierstrass curves |
| 36 | + (type==CurveType.Montgomery && b * (a * a - 4)==0) // Unfavourable Montgomery curves |
| 37 | + ) throw new Exception("Unfavourable curve"); |
| 38 | + this.a = a; |
| 39 | + this.b = b; |
| 40 | + this.modulo = modulo; |
| 41 | + this.type = type; |
| 42 | + } |
| 43 | + |
| 44 | + public CurvePoint Add(CurvePoint p1, CurvePoint p2) |
| 45 | + { |
| 46 | +#if SAFE_MATH |
| 47 | + CheckOnCurve(p1); |
| 48 | + CheckOnCurve(p2); |
| 49 | +#endif |
| 50 | + |
| 51 | + // Special cases |
| 52 | + if (p1 == CurvePoint.POINT_AT_INFINITY && p2 == CurvePoint.POINT_AT_INFINITY) return CurvePoint.POINT_AT_INFINITY; |
| 53 | + else if (p1 == CurvePoint.POINT_AT_INFINITY) return p2; |
| 54 | + else if (p2 == CurvePoint.POINT_AT_INFINITY) return p1; |
| 55 | + else if (p1.X == p2.X && p1.Y == Inverse(p2).Y) return CurvePoint.POINT_AT_INFINITY; |
| 56 | + |
| 57 | + IntX x3 = 0, y3 = 0; |
| 58 | + if (type == CurveType.Weierstrass) |
| 59 | + { |
| 60 | + IntX slope = p1.X == p2.X && p1.Y == p2.Y ? Mod((3 * p1.X * p1.X + a) * MulInverse(2 * p1.Y)) : Mod(Mod(p2.Y - p1.Y) * MulInverse(p2.X - p1.X)); |
| 61 | + x3 = Mod((slope * slope) - p1.X - p2.X); |
| 62 | + y3 = Mod(-((slope * x3) + p1.Y - (slope * p1.X))); |
| 63 | + } |
| 64 | + else if (type == CurveType.Montgomery) |
| 65 | + { |
| 66 | + if ((p1.X == p2.X && p1.Y == p2.Y)) |
| 67 | + { |
| 68 | + IntX q = 3 * p1.X; |
| 69 | + IntX w = q * p1.X; |
| 70 | + |
| 71 | + IntX e = 2 * a; |
| 72 | + IntX r = e * p1.X; |
| 73 | + |
| 74 | + IntX t = 2 * b; |
| 75 | + IntX y = t * p1.Y; |
| 76 | + |
| 77 | + IntX u = MulInverse(y); |
| 78 | + |
| 79 | + IntX o = w + e + 1; |
| 80 | + IntX p = o * u; |
| 81 | + } |
| 82 | + IntX co = p1.X == p2.X && p1.Y == p2.Y ? Mod((3 * p1.X * p1.X + 2 * a * p1.X + 1) * MulInverse(2 * b * p1.Y)) : Mod(Mod(p2.Y - p1.Y) * MulInverse(p2.X - p1.X)); // Compute a commonly used coefficient |
| 83 | + x3 = Mod(b * co * co - a - p1.X - p2.X); |
| 84 | + y3 = Mod(((2 * p1.X + p2.X + a) * co) - (b * co * co * co) - p1.Y); |
| 85 | + } |
| 86 | + |
| 87 | + return new CurvePoint(x3, y3); |
| 88 | + } |
| 89 | + |
| 90 | + public CurvePoint Multiply(CurvePoint p, IntX scalar) |
| 91 | + { |
| 92 | + if (scalar <= 0) throw new Exception("Cannot multiply by a scalar which is <= 0"); |
| 93 | + if (p == CurvePoint.POINT_AT_INFINITY) return CurvePoint.POINT_AT_INFINITY; |
| 94 | + |
| 95 | + CurvePoint p1 = new CurvePoint(p.X, p.Y); |
| 96 | + scalar.GetInternalState(out uint[] u, out bool b); |
| 97 | + long high_bit = -1; |
| 98 | + for (int i = u.Length - 1; i>=0; --i) |
| 99 | + if (u[i] != 0) |
| 100 | + { |
| 101 | + for(int j = 31; j>=0; --j) |
| 102 | + if ((u[i] & (1<<j))!=0) |
| 103 | + { |
| 104 | + high_bit = j + i * 32; |
| 105 | + goto Next; |
| 106 | + } |
| 107 | + } |
| 108 | + Next: |
| 109 | + |
| 110 | + // Double-and-add method |
| 111 | + while(high_bit >= 0) |
| 112 | + { |
| 113 | + p1 = Add(p1, p1); // Double |
| 114 | + if ((u.BitAt(high_bit))) |
| 115 | + p1 = Add(p1, p); // Add |
| 116 | + --high_bit; |
| 117 | + } |
| 118 | + |
| 119 | + return p1; |
| 120 | + } |
| 121 | + |
| 122 | + protected IntX MulInverse(IntX eq) => MulInverse(eq, modulo); |
| 123 | + public static IntX MulInverse(IntX eq, IntX modulo) |
| 124 | + { |
| 125 | + eq = Mod(eq, modulo); |
| 126 | + Stack<IntX> collect = new Stack<IntX>(); |
| 127 | + IntX v = modulo; // Copy modulo |
| 128 | + IntX m; |
| 129 | + while((m = v % eq) != 0) |
| 130 | + { |
| 131 | + collect.Push(-v/eq/*-(m.l_div)*/); |
| 132 | + v = eq; |
| 133 | + eq = m; |
| 134 | + } |
| 135 | + if (collect.Count == 0) return 1; |
| 136 | + v = 1; |
| 137 | + m = collect.Pop(); |
| 138 | + while (collect.Count > 0) |
| 139 | + { |
| 140 | + eq = m; |
| 141 | + m = v + (m * collect.Pop()); |
| 142 | + v = eq; |
| 143 | + } |
| 144 | + return Mod(m, modulo); |
| 145 | + } |
| 146 | + |
| 147 | + public CurvePoint Inverse(CurvePoint p) => Inverse(p, modulo); |
| 148 | + protected static CurvePoint Inverse(CurvePoint p, IntX modulo) => new CurvePoint(p.X, Mod(-p.Y, modulo)); |
| 149 | + |
| 150 | + public bool IsOnCurve(CurvePoint p) |
| 151 | + { |
| 152 | + try { CheckOnCurve(p); } |
| 153 | + catch { return false; } |
| 154 | + return true; |
| 155 | + } |
| 156 | + protected void CheckOnCurve(CurvePoint p) |
| 157 | + { |
| 158 | + if ( |
| 159 | + p!=CurvePoint.POINT_AT_INFINITY && // The point at infinity is asserted to be on the curve |
| 160 | + (type == CurveType.Weierstrass && Mod(p.Y * p.Y) != Mod((p.X * p.X * p.X) + (p.X * a) + b)) || // Weierstrass formula |
| 161 | + (type == CurveType.Montgomery && Mod(b * p.Y * p.Y) != Mod((p.X * p.X * p.X) + (p.X * p.X * a) + p.X)) // Montgomery formula |
| 162 | + ) throw new Exception("Point is not on curve"); |
| 163 | + } |
| 164 | + |
| 165 | + protected IntX Mod(IntX b) => Mod(b, modulo); |
| 166 | + |
| 167 | + private static IntX Mod(IntX x, IntX m) |
| 168 | + { |
| 169 | + IntX r = x.Abs() > m ? x % m : x; |
| 170 | + return r < 0 ? r + m : r; |
| 171 | + } |
| 172 | + |
| 173 | + protected static IntX ModPow(IntX x, IntX power, IntX prime) |
| 174 | + { |
| 175 | + IntX result = 1; |
| 176 | + bool setBit = false; |
| 177 | + while(power > 0) |
| 178 | + { |
| 179 | + x %= prime; |
| 180 | + setBit = (power & 1) == 1; |
| 181 | + power >>= 1; |
| 182 | + if (setBit) result *= x; |
| 183 | + x *= x; |
| 184 | + } |
| 185 | + |
| 186 | + return result; |
| 187 | + } |
| 188 | + } |
| 189 | +} |
0 commit comments