@@ -58,7 +58,7 @@ mlagents-learn <trainer-config-file> --env=<env_name> --run-id=<run-identifier>
5858
5959where
6060
61- - ` <trainer-config-file> ` is the file path of the trainer configuration yaml .
61+ - ` <trainer-config-file> ` is the file path of the trainer configuration YAML .
6262 This contains all the hyperparameter values. We offer a detailed guide on the
6363 structure of this file and the meaning of the hyperparameters (and advice on
6464 how to set them) in the dedicated
@@ -138,14 +138,6 @@ flags for `mlagents-learn` that control the training configurations:
138138- ` <trainer-config-file> ` : defines the training hyperparameters for each
139139 Behavior in the scene, and the set-ups for the environment parameters
140140 (Curriculum Learning and Environment Parameter Randomization)
141- - ` --num-envs ` : number of concurrent Unity instances to use during training
142-
143- Reminder that a detailed description of all command-line options can be found by
144- using the help utility:
145-
146- ``` sh
147- mlagents-learn --help
148- ```
149141
150142It is important to highlight that successfully training a Behavior in the
151143ML-Agents Toolkit involves tuning the training hyperparameters and
@@ -172,7 +164,6 @@ add typically has its own training configurations. For instance:
172164 demonstrations.)
173165- Use self-play? (Assuming your environment includes multiple agents.)
174166
175-
176167The trainer config file, ` <trainer-config-file> ` , determines the features you will
177168use during training, and the answers to the above questions will dictate its contents.
178169The rest of this guide breaks down the different sub-sections of the trainer config file
@@ -185,6 +176,57 @@ an old set of configuration files (trainer config, curriculum, and sampler files
185176format, a script has been provided. Run ` python -m mlagents.trainers.upgrade_config -h ` in your
186177console to see the script's usage.
187178
179+ ### Adding CLI Arguments to the Training Configuration file
180+
181+ Additionally, within the training configuration YAML file, you can also add the
182+ CLI arguments (such as ` --num-envs ` ).
183+
184+ Reminder that a detailed description of all the CLI arguments can be found by
185+ using the help utility:
186+
187+ ``` sh
188+ mlagents-learn --help
189+ ```
190+
191+ These additional CLI arguments are grouped into environment, engine and checkpoint. The available settings and example values are shown below.
192+
193+ #### Environment settings
194+
195+ ``` yaml
196+ env_settings :
197+ env_path : FoodCollector
198+ env_args : null
199+ base_port : 5005
200+ num_envs : 1
201+ seed : -1
202+ ` ` `
203+
204+ #### Engine settings
205+
206+ ` ` ` yaml
207+ engine_settings :
208+ width : 84
209+ height : 84
210+ quality_level : 5
211+ time_scale : 20
212+ target_frame_rate : -1
213+ capture_frame_rate : 60
214+ no_graphics : false
215+ ` ` `
216+
217+ #### Checkpoint settings
218+
219+ ` ` ` yaml
220+ checkpoint_settings :
221+ run_id : foodtorch
222+ initialize_from : null
223+ load_model : false
224+ resume : false
225+ force : true
226+ train_model : false
227+ inference : false
228+ ` ` `
229+
188230### Behavior Configurations
189231
190232The primary section of the trainer config file is a
0 commit comments