@@ -112,7 +112,7 @@ def make_inputs(self) -> None:
112
112
# Create input ops for next (t+1) visual observations.
113
113
visual_input = self .policy_model .create_visual_input (
114
114
self .policy_model .brain .camera_resolutions [i ],
115
- name = "visual_observation_ " + str (i ),
115
+ name = "gail_visual_observation_ " + str (i ),
116
116
)
117
117
self .expert_visual_in .append (visual_input )
118
118
@@ -121,7 +121,7 @@ def make_inputs(self) -> None:
121
121
self .encoding_size ,
122
122
LearningModel .swish ,
123
123
1 ,
124
- "stream_ {}_visual_obs_encoder" .format (i ),
124
+ "gail_stream_ {}_visual_obs_encoder" .format (i ),
125
125
False ,
126
126
)
127
127
@@ -130,7 +130,7 @@ def make_inputs(self) -> None:
130
130
self .encoding_size ,
131
131
LearningModel .swish ,
132
132
1 ,
133
- "stream_ {}_visual_obs_encoder" .format (i ),
133
+ "gail_stream_ {}_visual_obs_encoder" .format (i ),
134
134
True ,
135
135
)
136
136
visual_policy_encoders .append (encoded_policy_visual )
@@ -163,15 +163,15 @@ def create_encoder(
163
163
concat_input ,
164
164
self .h_size ,
165
165
activation = LearningModel .swish ,
166
- name = "d_hidden_1 " ,
166
+ name = "gail_d_hidden_1 " ,
167
167
reuse = reuse ,
168
168
)
169
169
170
170
hidden_2 = tf .layers .dense (
171
171
hidden_1 ,
172
172
self .h_size ,
173
173
activation = LearningModel .swish ,
174
- name = "d_hidden_2 " ,
174
+ name = "gail_d_hidden_2 " ,
175
175
reuse = reuse ,
176
176
)
177
177
@@ -182,7 +182,7 @@ def create_encoder(
182
182
hidden_2 ,
183
183
self .z_size ,
184
184
reuse = reuse ,
185
- name = "z_mean " ,
185
+ name = "gail_z_mean " ,
186
186
kernel_initializer = LearningModel .scaled_init (0.01 ),
187
187
)
188
188
@@ -198,7 +198,7 @@ def create_encoder(
198
198
estimate_input ,
199
199
1 ,
200
200
activation = tf .nn .sigmoid ,
201
- name = "d_estimate " ,
201
+ name = "gail_d_estimate " ,
202
202
reuse = reuse ,
203
203
)
204
204
return estimate , z_mean , concat_input
@@ -209,15 +209,15 @@ def create_network(self) -> None:
209
209
"""
210
210
if self .use_vail :
211
211
self .z_sigma = tf .get_variable (
212
- "sigma_vail " ,
212
+ "gail_sigma_vail " ,
213
213
self .z_size ,
214
214
dtype = tf .float32 ,
215
215
initializer = tf .ones_initializer (),
216
216
)
217
217
self .z_sigma_sq = self .z_sigma * self .z_sigma
218
218
self .z_log_sigma_sq = tf .log (self .z_sigma_sq + EPSILON )
219
219
self .use_noise = tf .placeholder (
220
- shape = [1 ], dtype = tf .float32 , name = "NoiseLevel "
220
+ shape = [1 ], dtype = tf .float32 , name = "gail_NoiseLevel "
221
221
)
222
222
self .expert_estimate , self .z_mean_expert , _ = self .create_encoder (
223
223
self .encoded_expert , self .expert_action , self .done_expert , reuse = False
@@ -229,7 +229,7 @@ def create_network(self) -> None:
229
229
reuse = True ,
230
230
)
231
231
self .discriminator_score = tf .reshape (
232
- self .policy_estimate , [- 1 ], name = "GAIL_reward "
232
+ self .policy_estimate , [- 1 ], name = "gail_reward "
233
233
)
234
234
self .intrinsic_reward = - tf .log (1.0 - self .discriminator_score + EPSILON )
235
235
0 commit comments