Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/unstract/llmwhisperer/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
__version__ = "0.21.0"
__version__ = "0.22.0"

from .client import LLMWhispererClient # noqa: F401

Expand Down
94 changes: 21 additions & 73 deletions tests/client_test.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,9 @@
import logging
import os
import unittest
from difflib import SequenceMatcher, unified_diff
from pathlib import Path

import pytest
import requests

from unstract.llmwhisperer import LLMWhispererClient

logger = logging.getLogger(__name__)

Expand All @@ -23,9 +20,7 @@ def test_get_usage_info(client):
"subscription_plan",
"today_page_count",
]
assert set(usage_info.keys()) == set(
expected_keys
), f"usage_info {usage_info} does not contain the expected keys"
assert set(usage_info.keys()) == set(expected_keys), f"usage_info {usage_info} does not contain the expected keys"


@pytest.mark.parametrize(
Expand All @@ -41,85 +36,38 @@ def test_get_usage_info(client):
)
def test_whisper(client, data_dir, processing_mode, output_mode, input_file):
file_path = os.path.join(data_dir, input_file)
response = client.whisper(
whisper_result = client.whisper(
processing_mode=processing_mode,
output_mode=output_mode,
file_path=file_path,
timeout=200,
)
logger.debug(response)
logger.debug(whisper_result)

exp_basename = f"{Path(input_file).stem}.{processing_mode}.{output_mode}.txt"
exp_file = os.path.join(data_dir, "expected", exp_basename)
with open(exp_file, encoding="utf-8") as f:
exp = f.read()

assert isinstance(response, dict)
assert response["status_code"] == 200
assert response["extracted_text"] == exp
assert_extracted_text(exp_file, whisper_result, processing_mode, output_mode)


# TODO: Review and port to pytest based tests
class TestLLMWhispererClient(unittest.TestCase):
@unittest.skip("Skipping test_whisper")
def test_whisper(self):
client = LLMWhispererClient()
# response = client.whisper(
# url="https://storage.googleapis.com/pandora-static/samples/bill.jpg.pdf"
# )
response = client.whisper(
file_path="test_data/restaurant_invoice_photo.pdf",
timeout=200,
store_metadata_for_highlighting=True,
)
print(response)
# self.assertIsInstance(response, dict)
def assert_extracted_text(file_path, whisper_result, mode, output_mode):
with open(file_path, encoding="utf-8") as f:
exp = f.read()

# @unittest.skip("Skipping test_whisper")
def test_whisper_stream(self):
client = LLMWhispererClient()
download_url = (
"https://storage.googleapis.com/pandora-static/samples/bill.jpg.pdf"
)
# Create a stream of download_url and pass it to whisper
response_download = requests.get(download_url, stream=True)
response_download.raise_for_status()
response = client.whisper(
stream=response_download.iter_content(chunk_size=1024),
timeout=200,
store_metadata_for_highlighting=True,
)
print(response)
# self.assertIsInstance(response, dict)
assert isinstance(whisper_result, dict)
assert whisper_result["status_code"] == 200

@unittest.skip("Skipping test_whisper_status")
def test_whisper_status(self):
client = LLMWhispererClient()
response = client.whisper_status(
whisper_hash="7cfa5cbb|5f1d285a7cf18d203de7af1a1abb0a3a"
)
logger.info(response)
self.assertIsInstance(response, dict)
# For OCR based processing
threshold = 0.97

@unittest.skip("Skipping test_whisper_retrieve")
def test_whisper_retrieve(self):
client = LLMWhispererClient()
response = client.whisper_retrieve(
whisper_hash="7cfa5cbb|5f1d285a7cf18d203de7af1a1abb0a3a"
)
logger.info(response)
self.assertIsInstance(response, dict)
# For text based processing
if mode == "native_text" and output_mode == "text":
threshold = 0.99
extracted_text = whisper_result["extracted_text"]
similarity = SequenceMatcher(None, extracted_text, exp).ratio()

@unittest.skip("Skipping test_whisper_highlight_data")
def test_whisper_highlight_data(self):
client = LLMWhispererClient()
response = client.highlight_data(
whisper_hash="9924d865|5f1d285a7cf18d203de7af1a1abb0a3a",
search_text="Indiranagar",
if similarity < threshold:
diff = "\n".join(
unified_diff(exp.splitlines(), extracted_text.splitlines(), fromfile="Expected", tofile="Extracted")
)
logger.info(response)
self.assertIsInstance(response, dict)


if __name__ == "__main__":
unittest.main()
pytest.fail(f"Texts are not similar enough: {similarity * 100:.2f}% similarity. Diff:\n{diff}")
Loading
Loading