Skip to content

Commit 7758532

Browse files
authored
fixed connection closing prematurely in index.py (#140)
* fixed connection closing prematurely in index.py * Update index.py Modifed the single try-except block into two enclosed by a parent try except block Signed-off-by: Praveen Kumar <[email protected]> * Update index.py Signed-off-by: Praveen Kumar <[email protected]> --------- Signed-off-by: Praveen Kumar <[email protected]>
1 parent ebb98c9 commit 7758532

File tree

2 files changed

+43
-38
lines changed

2 files changed

+43
-38
lines changed

src/unstract/sdk/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
__version__ = "0.54.0rc10"
1+
__version__ = "0.54.0rc11"
22

33

44
def get_sdk_version():

src/unstract/sdk/index.py

Lines changed: 42 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -73,43 +73,48 @@ def query_index(
7373

7474
try:
7575
self.tool.stream_log(
76-
f">>> Querying '{vector_db_instance_id}' for {doc_id}..."
77-
)
78-
doc_id_eq_filter = MetadataFilter.from_dict(
79-
{
80-
"key": "doc_id",
81-
"operator": FilterOperator.EQ,
82-
"value": doc_id,
83-
}
84-
)
85-
filters = MetadataFilters(filters=[doc_id_eq_filter])
86-
q = VectorStoreQuery(
87-
query_embedding=embedding.get_query_embedding(" "),
88-
doc_ids=[doc_id],
89-
filters=filters,
90-
similarity_top_k=Constants.TOP_K,
91-
)
92-
except Exception as e:
93-
self.tool.stream_log(
94-
f"Error building query {vector_db}: {e}", level=LogLevel.ERROR
95-
)
96-
raise VectorDBError(
97-
f"Error building query for {vector_db}: {e}", actual_err=e
98-
)
99-
finally:
100-
vector_db.close()
101-
102-
try:
103-
n: VectorStoreQueryResult = vector_db.query(query=q)
104-
if len(n.nodes) > 0:
105-
self.tool.stream_log(f"Found {len(n.nodes)} nodes for {doc_id}")
106-
all_text = ""
107-
for node in n.nodes:
108-
all_text += node.get_content()
109-
return all_text
110-
else:
111-
self.tool.stream_log(f"No nodes found for {doc_id}")
112-
return None
76+
f">>> Querying '{vector_db_instance_id}' for {doc_id}..."
77+
)
78+
try:
79+
doc_id_eq_filter = MetadataFilter.from_dict(
80+
{
81+
"key": "doc_id",
82+
"operator": FilterOperator.EQ,
83+
"value": doc_id,
84+
}
85+
)
86+
filters = MetadataFilters(filters=[doc_id_eq_filter])
87+
q = VectorStoreQuery(
88+
query_embedding=embedding.get_query_embedding(" "),
89+
doc_ids=[doc_id],
90+
filters=filters,
91+
similarity_top_k=Constants.TOP_K,
92+
)
93+
except Exception as e:
94+
self.tool.stream_log(
95+
f"Error while building vector DB query: {e}", level=LogLevel.ERROR
96+
)
97+
raise VectorDBError(
98+
f"Failed to construct query for {vector_db}: {e}", actual_err=e
99+
)
100+
try:
101+
n: VectorStoreQueryResult = vector_db.query(query=q)
102+
if len(n.nodes) > 0:
103+
self.tool.stream_log(f"Found {len(n.nodes)} nodes for {doc_id}")
104+
all_text = ""
105+
for node in n.nodes:
106+
all_text += node.get_content()
107+
return all_text
108+
else:
109+
self.tool.stream_log(f"No nodes found for {doc_id}")
110+
return None
111+
except Exception as e:
112+
self.tool.stream_log(
113+
f"Error while executing vector DB query: {e}", level=LogLevel.ERROR
114+
)
115+
raise VectorDBError(
116+
f"Failed to execute query on {vector_db}: {e}", actual_err=e
117+
)
113118
finally:
114119
vector_db.close()
115120

0 commit comments

Comments
 (0)