Code for the paper
“Mispronunciation Detection Without L2 Pronunciation Dataset in Low-Resource Setting: A Case Study in Finland Swedish” (Interspeech 2025).
| File | Purpose |
|---|---|
temperature_scaling.ipynb |
Main notebook – temperature scaling and top-k normalization |
environment.yaml |
Exact Conda environment (optional) |
The algorihtm is very simple, so you can run without any specific requirement. However, you can also install the full environment from the yaml file
# optional: reproducible environment
conda env create -n FinSwe -f environment.yaml
conda activate FinSweRun the notebook temperature_scaling.ipynb. Of course you still need the Wav2vec 2.0 model and an audio file.
'fara', 'göra'
fara, göra
/rt/ and /u:/
bort, kors, kort, korta, borta
telefon, telefonen, telefoner
Others
sju, sjuk, sjuka, stjärna
sport
köpa
kyrka, kyrkan, kyrkas
kina
kök
tjära, tjärn, tjugo, tjugofem
kjol, kjolar
tjena, tjejen, tjejet
domare, domaren
döma, dömas
skjorta, skjortan, skjortor
djur, djuren, djuret
djup, djupa, djupt, djupare
djärvare
Phan, N., Kuronen, M., Kautonen, M., Ullakonoja, R., von Zansen, A., Getman, Y., Voskoboinik, E., Grósz, T., Kurimo, M. (2025) Mispronunciation Detection Without L2 Pronunciation Dataset in Low-Resource Setting: A Case Study in Finland Swedish. Accepted in Interspeech 2025.
@inproceedings{phan25,
title = {Mispronunciation Detection Without L2 Pronunciation Dataset in Low-Resource Setting: A Case Study in Finland Swedish},
author = {Nhan Phan and Mikko Kuronen and Maria Kautonen and Riikka Ullakonoja and Anna {von Zansen} and Yaroslav Getman and Ekaterina Voskoboinik and Tamás Grosz and Mikko Kurimo},
year = {2025},
}
Our work is shared under Creative Commons Attribution 4.0 International (CC-BY-4.0)