@@ -11,13 +11,15 @@ module Data.Container.Combinator.Properties where
11
11
open import Axiom.Extensionality.Propositional using (Extensionality)
12
12
open import Data.Container.Core using (Container; ⟦_⟧)
13
13
open import Data.Container.Combinator
14
- open import Data.Empty using (⊥-elim)
15
- open import Data.Product.Base as P using (∃; _,_; proj₁; proj₂; <_,_>; uncurry; curry)
14
+ open import Data.Product.Base as P
15
+ using (∃; _,_; proj₁; proj₂; <_,_>; uncurry; curry)
16
16
open import Data.Sum.Base as S using (inj₁; inj₂; [_,_]′; [_,_])
17
17
open import Function.Base as F using (_∘′_)
18
18
open import Function.Bundles using (_↔_; mk↔ₛ′)
19
19
open import Level using (_⊔_; lower)
20
- open import Relation.Binary.PropositionalEquality.Core using (_≡_; _≗_; refl; cong)
20
+ open import Relation.Binary.PropositionalEquality.Core
21
+ using (_≡_; _≗_; refl; cong)
22
+ open import Relation.Nullary.Negation.Core using (contradiction)
21
23
22
24
-- I have proved some of the correctness statements under the
23
25
-- assumption of functional extensionality. I could have reformulated
@@ -34,7 +36,7 @@ module Constant (ext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′) where
34
36
correct {x} {y} X {Y} = mk↔ₛ′ (from-const X) (to-const X) (λ _ → refl) from∘to
35
37
where
36
38
from∘to : (x : ⟦ const X ⟧ Y) → to-const X (proj₁ x) ≡ x
37
- from∘to xs = cong (proj₁ xs ,_) (ext (λ x → ⊥-elim ( lower x) ))
39
+ from∘to xs = cong (proj₁ xs ,_) (ext (λ x → contradiction x lower ))
38
40
39
41
module Composition {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where
40
42
0 commit comments