-
Notifications
You must be signed in to change notification settings - Fork 257
Add new module Effect.Functor.Naperian
- Continuation of #2004
#2815
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from 18 commits
1a86ef4
0dd5051
af6d2dc
eba481c
603483f
7dcb115
d76c8df
73bd5bd
e233f0e
ad30c67
775560f
6804ecd
a1de89f
527e4d7
3c478d3
d697f2c
0741736
5216bbb
ffda892
6ad71f0
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -14,14 +14,17 @@ open import Data.Vec.Base as Vec hiding (_⊛_) | |
open import Data.Vec.Properties | ||
open import Effect.Applicative as App using (RawApplicative) | ||
open import Effect.Functor as Fun using (RawFunctor) | ||
open import Effect.Functor.Naperian as Nap using (RawNaperian; PropositionalNaperian) | ||
open import Effect.Monad using (RawMonad; module Join; RawMonadT; mkRawMonad) | ||
import Function.Identity.Effectful as Id | ||
open import Function.Base using (flip; _∘_) | ||
open import Level using (Level) | ||
open import Level using (Level; 0ℓ) | ||
open import Relation.Binary.Bundles using (Setoid) | ||
open import Relation.Binary.PropositionalEquality | ||
|
||
private | ||
variable | ||
a : Level | ||
a b : Level | ||
A : Set a | ||
n : ℕ | ||
|
||
|
@@ -33,6 +36,22 @@ functor = record | |
{ _<$>_ = map | ||
} | ||
|
||
naperian : RawNaperian (λ (A : Set a) → Vec A n) 0ℓ | ||
naperian {n = n} = record | ||
{ rawFunctor = functor | ||
; Log = Fin n | ||
; index = lookup | ||
; tabulate = tabulate | ||
} | ||
|
||
fullNaperian : PropositionalNaperian (λ (A : Set a) → Vec A n) 0ℓ | ||
fullNaperian A = record | ||
{ rawNaperian = naperian | ||
; index-tabulate = λ f l → lookup∘tabulate f l | ||
|
||
; natural-tabulate = λ f k l → cong (λ fx → lookup fx l) (tabulate-∘ f k) | ||
; natural-index = λ f as l → lookup-map l f as | ||
} | ||
|
||
applicative : RawApplicative (λ (A : Set a) → Vec A n) | ||
applicative {n = n} = record | ||
{ rawFunctor = functor | ||
|
Original file line number | Diff line number | Diff line change | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
@@ -0,0 +1,82 @@ | ||||||||||
------------------------------------------------------------------------ | ||||||||||
-- The Agda standard library | ||||||||||
-- | ||||||||||
-- Naperian functor | ||||||||||
-- | ||||||||||
-- Definitions of Naperian Functors, as named by Hancock and McBride, | ||||||||||
-- and subsequently documented by Jeremy Gibbons | ||||||||||
-- in the article "APLicative Programming with Naperian Functors" | ||||||||||
-- which appeared at ESOP 2017. | ||||||||||
-- https://link.springer.com/chapter/10.1007/978-3-662-54434-1_21 | ||||||||||
------------------------------------------------------------------------ | ||||||||||
|
||||||||||
{-# OPTIONS --cubical-compatible --safe #-} | ||||||||||
|
||||||||||
module Effect.Functor.Naperian where | ||||||||||
|
||||||||||
open import Effect.Functor using (RawFunctor) | ||||||||||
open import Effect.Applicative using (RawApplicative) | ||||||||||
open import Level using (Level; suc; _⊔_) | ||||||||||
open import Relation.Binary.Bundles using (Setoid) | ||||||||||
open import Relation.Binary.PropositionalEquality.Properties as ≡ using (setoid) | ||||||||||
open import Function.Base using (_∘_; const) | ||||||||||
|
||||||||||
private | ||||||||||
variable | ||||||||||
a b c ℓ : Level | ||||||||||
A : Set a | ||||||||||
|
||||||||||
-- From the paper: | ||||||||||
-- "Functor f is Naperian if there is a type p of ‘positions’ such that fa≃p→a; | ||||||||||
-- then p behaves a little like a logarithm of f | ||||||||||
-- in particular, if f and g are both Naperian, | ||||||||||
-- then Log(f×g)≃Logf+Logg and Log(f.g) ≃ Log f × Log g" | ||||||||||
|
||||||||||
-- RawNaperian contains just the functions, not the proofs | ||||||||||
module _ (F : Set a → Set b) c where | ||||||||||
record RawNaperian : Set (suc (a ⊔ c) ⊔ b) where | ||||||||||
field | ||||||||||
rawFunctor : RawFunctor F | ||||||||||
Log : Set c | ||||||||||
index : F A → (Log → A) | ||||||||||
tabulate : (Log → A) → F A | ||||||||||
open RawFunctor rawFunctor public | ||||||||||
|
||||||||||
-- Full Naperian has the coherence conditions too. | ||||||||||
|
||||||||||
record Naperian (S : Setoid a ℓ) : Set (suc (a ⊔ c) ⊔ b ⊔ ℓ) where | ||||||||||
field | ||||||||||
rawNaperian : RawNaperian | ||||||||||
open RawNaperian rawNaperian public | ||||||||||
open module S = Setoid S | ||||||||||
private | ||||||||||
FS : Setoid b (c ⊔ ℓ) | ||||||||||
FS = record | ||||||||||
{ _≈_ = λ (fx fy : F Carrier) → ∀ (l : Log) → index fx l ≈ index fy l | ||||||||||
; isEquivalence = record | ||||||||||
{ refl = λ _ → refl | ||||||||||
; sym = λ eq l → sym (eq l) | ||||||||||
; trans = λ i≈j j≈k l → trans (i≈j l) (j≈k l) | ||||||||||
} | ||||||||||
} | ||||||||||
module FS = Setoid FS | ||||||||||
field | ||||||||||
index-tabulate : (f : Log → Carrier) → ((l : Log) → index (tabulate f) l ≈ f l) | ||||||||||
natural-tabulate : (f : Carrier → Carrier) (k : Log → Carrier) → (tabulate (f ∘ k)) FS.≈ (f <$> (tabulate k)) | ||||||||||
natural-index : (f : Carrier → Carrier) (as : F Carrier) (l : Log) → (index (f <$> as) l) ≈ f (index as l) | ||||||||||
|
||||||||||
|
||||||||||
tabulate-index : (fx : F Carrier) → tabulate (index fx) FS.≈ fx | ||||||||||
tabulate-index = index-tabulate ∘ index | ||||||||||
|
||||||||||
PropositionalNaperian : Set (suc (a ⊔ c) ⊔ b) | ||||||||||
PropositionalNaperian = ∀ A → Naperian (≡.setoid A) | ||||||||||
|
||||||||||
Naperian-Applicative : RawNaperian → RawApplicative F | ||||||||||
Naperian-Applicative rn = | ||||||||||
|
Naperian-Applicative : RawNaperian → RawApplicative F | |
Naperian-Applicative rn = | |
rawApplicative : RawNaperian → RawApplicative F | |
rawApplicative rn = |
on our 'usual' naming model?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think I would name this
rawNaperian
and the one belownaperian
.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Similarly:
rawApplicative
below... etc.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Changing the naming of
naperian
was easy. However, changingapplicative
torawApplicative
caused problems with the moduleTraversableM
, as it attempts to open therawApplicative
inside theRawMonad
, which can conflict with the naming.The way I found was to explicitly extract the
rawApplicative
fromRawMonad
withopen TraversableA (RawMonad.rawApplicative Mon) public