Skip to content
Open
Show file tree
Hide file tree
Changes from 14 commits
Commits
Show all changes
20 commits
Select commit Hold shift + click to select a range
1a86ef4
Upload new file Effect.Functor.Naperian to stdlib
Sofia-Insa Jun 21, 2023
0dd5051
Update CHANGELOG.md
Sofia-Insa Jun 21, 2023
af6d2dc
Merge branch 'task2-Naperian' of https://github.com/Sofia-Insa/agda-s…
Sofia-Insa Jun 22, 2023
eba481c
Update CHANGELOG.md
Sofia-Insa Jun 22, 2023
603483f
updated `CHANGELOG`
jamesmckinna Mar 17, 2024
7dcb115
added note
jamesmckinna Mar 17, 2024
d76c8df
Merge branch 'master' into task2-Naperian
jamesmckinna Mar 17, 2024
73bd5bd
hopefully now fixed merge conflict with up-to-date `CHANGELOG`
jamesmckinna Mar 17, 2024
e233f0e
restored original details to `CHANGELOG`
jamesmckinna Mar 17, 2024
ad30c67
review comments from me
jamesmckinna Mar 17, 2024
775560f
Merge branch 'master' into task2-Naperian
JacquesCarette May 6, 2024
6804ecd
Setoid version of Naperian -- needs another pair of eyes.
JacquesCarette May 7, 2024
a1de89f
whitespace
JacquesCarette May 7, 2024
527e4d7
[FIX]: Naming + Propositional Naperian
gabriellisboaconegero Aug 21, 2025
3c478d3
[REFAC]: RawFunctor as part of RawNaperian + james revision
gabriellisboaconegero Aug 27, 2025
d697f2c
Merge branch 'master' into functor_naperian
gabriellisboaconegero Aug 27, 2025
0741736
[DOC]: Update CHANGELOG
gabriellisboaconegero Aug 27, 2025
5216bbb
[ADD]: Vec n is Naperian; rawNaperian to rawApplicative
gabriellisboaconegero Aug 29, 2025
ffda892
[NAMING]: Correct naming in Vec.Effectful and Naperian
gabriellisboaconegero Sep 2, 2025
6ad71f0
[NAMING]: ETA contract
gabriellisboaconegero Sep 2, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 48 additions & 7 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,25 +83,55 @@ New modules
Algebra.Module.Bundles.Raw
```

* Nagata's construction of the "idealization of a module":
```agda
Algebra.Module.Construct.Idealization
```

* The unique morphism from the initial, resp. terminal, algebra:
```agda
Algebra.Morphism.Construct.Initial
Algebra.Morphism.Construct.Terminal
```

* Pointwise and equality relations over indexed containers:
```agda
Data.Container.Indexed.Relation.Binary.Pointwise
Data.Container.Indexed.Relation.Binary.Pointwise.Properties
Data.Container.Indexed.Relation.Binary.Equality.Setoid
```

* Prime factorisation of natural numbers.
```
Data.Nat.Primality.Factorisation
```

* Consequences of 'infinite descent' for (accessible elements of) well-founded relations:
* Permutation relation for functional vectors:
```agda
Induction.InfiniteDescent
Data.Vec.Functional.Relation.Binary.Permutation
```
defining `_↭_ : IRel (Vector A) _`

* The unique morphism from the initial, resp. terminal, algebra:
* Properties of `Data.Vec.Functional.Relation.Binary.Permutation`:
```agda
Data.Vec.Functional.Relation.Binary.Permutation.Properties
```
defining
```agda
Algebra.Morphism.Construct.Initial
Algebra.Morphism.Construct.Terminal
↭-refl : Reflexive (Vector A) _↭_
↭-reflexive : xs ≡ ys → xs ↭ ys
↭-sym : Symmetric (Vector A) _↭_
↭-trans : Transitive (Vector A) _↭_
```

* Nagata's construction of the "idealization of a module":
* New module defining Naperian functors, 'logarithms of containers' (Hancock/McBride)
```
Effect.Functor.Naperian
```
defining
```agda
Algebra.Module.Construct.Idealization
record RawNaperian (RF : RawFunctor F) : Set _
record Naperian (RF : RawFunctor F) : Set _
```

* `Data.List.Relation.Binary.Sublist.Propositional.Slice`
Expand Down Expand Up @@ -134,6 +164,11 @@ New modules
_⇨_ = setoid
```

* Consequences of 'infinite descent' for (accessible elements of) well-founded relations:
```agda
Induction.InfiniteDescent
```

* Symmetric interior of a binary relation
```
Relation.Binary.Construct.Interior.Symmetric
Expand Down Expand Up @@ -217,6 +252,12 @@ Additions to existing modules
rawModule : RawModule _ c ℓ
```

* In `Algebra.Construct.Terminal`:
```agda
rawNearSemiring : RawNearSemiring c ℓ
nearSemiring : NearSemiring c ℓ
```

* In `Algebra.Module.Construct.Zero`:
```agda
rawLeftSemimodule : RawLeftSemimodule R c ℓ
Expand Down
81 changes: 81 additions & 0 deletions src/Effect/Functor/Naperian.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
------------------------------------------------------------------------
-- The Agda standard library
--
-- Naperian functor
--
-- Definitions of Naperian Functors, as named by Hancock and McBride,
-- and subsequently documented by Jeremy Gibbons
-- in the article "APLicative Programming with Naperian Functors"
-- which appeared at ESOP 2017.
-- https://link.springer.com/chapter/10.1007/978-3-662-54434-1_21
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Effect.Functor.Naperian where

open import Effect.Functor using (RawFunctor)
open import Function.Bundles using (_⟶ₛ_; _⟨$⟩_; Func)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
open import Function.Bundles using (_⟶ₛ_; _⟨$⟩_; Func)
open import Function.Base using (_∘_)

open import Level using (Level; suc; _⊔_)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.PropositionalEquality.Core using (_≡_)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The relation itself is now never used, only its property of admitting a Setoid bundle, so this can be deleted

Suggested change
open import Relation.Binary.PropositionalEquality.Core using (_≡_)

open import Relation.Binary.PropositionalEquality.Properties as ≡
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can simplify this to:

Suggested change
open import Relation.Binary.PropositionalEquality.Properties as ≡
import Relation.Binary.PropositionalEquality.Properties as ≡ using (setoid)


private
variable
a b c e f : Level
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Standardise, based on parametrisation on S : Setoid a ℓ, itself a lexical convention:

Suggested change
a b c e f : Level
a b c : Level

A : Set a

-- From the paper:
-- "Functor f is Naperian if there is a type p of ‘positions’ such that fa≃p→a;
-- then p behaves a little like a logarithm of f
-- in particular, if f and g are both Naperian,
-- then Log(f×g)≃Logf+Logg and Log(f.g) ≃ Log f × Log g"

-- RawNaperian contains just the functions, not the proofs
record RawNaperian {F : Set a → Set b} c (RF : RawFunctor F) : Set (suc (a ⊔ c) ⊔ b) where
field
Log : Set c
index : F A → (Log → A)
tabulate : (Log → A) → F A

-- Full Naperian has the coherence conditions too.
-- Propositional version (hard to work with).

-- module Propositional where
-- record Naperian {F : Set a → Set b} c (RF : RawFunctor F) : Set (suc (a ⊔ c) ⊔ b) where
-- field
-- rawNaperian : RawNaperian c RF
-- open RawNaperian rawNaperian public
-- field
-- tabulate-index : (fa : F A) → tabulate (index fa) ≡ fa
-- index-tabulate : (f : Log → A) → ((l : Log) → index (tabulate f) l ≡ f l)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Delete!


module _ {F : Set a → Set b} c (RF : RawFunctor F) where
private
FA : (S : Setoid a e) → (rn : RawNaperian c RF) → Setoid b (c ⊔ e)
FA S rn = record
{ _≈_ = λ (fx fy : F Carrier) → (l : Log) → index fx l ≈ index fy l
; isEquivalence = record
{ refl = λ _ → refl
; sym = λ eq l → sym (eq l)
; trans = λ i≈j j≈k l → trans (i≈j l) (j≈k l)
}
}
where
open Setoid S
open RawNaperian rn

record Naperian (S : Setoid a e) : Set (suc a ⊔ b ⊔ suc c ⊔ e) where
field
rawNaperian : RawNaperian c RF
open RawNaperian rawNaperian public
private
module FS = Setoid (FA S rawNaperian)
module A = Setoid S
field
tabulate-index : (fx : F A.Carrier) → tabulate (index fx) FS.≈ fx
index-tabulate : (f : Log → A.Carrier) → ((l : Log) → index (tabulate f) l A.≈ f l)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

See the revised version in my extended comment.

PropositionalNaperian : Set (suc (a ⊔ c) ⊔ b)
PropositionalNaperian = ∀ {A} → Naperian (≡.setoid A)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

On the current design wrt parametrisation, I think that A should be explicit:

Suggested change
PropositionalNaperian = {A} Naperian (≡.setoid A)
PropositionalNaperian = A Naperian (≡.setoid A)