Skip to content

ajitrajasekharan/root

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 

Repository files navigation

This BERT based POS tagger is derived almost entirely from https://github.com/Kyubyong ipython notebook

https://github.com/Kyubyong/nlp_made_easy

Requirements

  • Pytorch (conda install -c pytorch pytorch)
  • Pytorch pre-trained BERT . (pip install pytorch-pretrained-bert)
  • nltk (pip install nltk)

Data

  • Automatically fetches treebank training data using nltk (when running first time, it will prompt to install treebank. This can be done from within python prompt in command line)

Usage

  1. To train. python bert_post_train.py < model dir to save. e.g. out > . (this will result in training with accuracy ~98%)

  2. To test. python bert_post_test.py < model dir to load >

    Example input: The bird flew over the house and perched on a tree

    Output: [('The', 'DT'), ('bird', 'NN'), ('flew', 'VBD'), ('over', 'IN'), ('the', 'DT'), ('house', 'NN'), ('and', 'CC'), ('perched', 'VBD'), ('on', 'IN'), ('a', 'DT'), ('tree', 'NN')]

License

MIT License

About

Fine-tuned BERT model for POS tagging

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages