Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions app/bot/nlu/intent_classifiers/tf_intent_classifer.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,9 +7,8 @@
import spacy
import tensorflow as tf
from sklearn.preprocessing import LabelBinarizer
from tensorflow.python.keras import Sequential
from tensorflow.python.layers.core import Dense
from tensorflow.python.layers.core import Dropout
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Dropout
from app.bot.nlu.pipeline import NLUComponent

np.random.seed(1)
Expand Down
3 changes: 3 additions & 0 deletions tests/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@



82 changes: 82 additions & 0 deletions tests/test_nlu_pipeline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
import pytest
from unittest.mock import MagicMock, patch
from app.bot.nlu.featurizers.spacy_featurizer import SpacyFeaturizer
from app.bot.nlu.intent_classifiers.sklearn_intent_classifer import SklearnIntentClassifier
from app.bot.nlu.intent_classifiers.tf_intent_classifer import TfIntentClassifier
from app.bot.nlu.entity_extractors.crf_entity_extractor import CRFEntityExtractor
from app.bot.nlu.entity_extractors.synonym_replacer import SynonymReplacer
from app.bot.nlu.llm.zero_shot_nlu_openai import ZeroShotNLUOpenAI

@pytest.fixture
def sample_text():
return "Order a large pepperoni pizza"

@pytest.fixture
def spacy_model():
import spacy
return spacy.blank("en")

@pytest.fixture
def spacy_featurizer(spacy_model):
return SpacyFeaturizer(model_name="en")


def test_spacy_featurizer_process(spacy_featurizer, sample_text):
message = {"text": sample_text}
result = spacy_featurizer.process(message)
assert "spacy_doc" in result
assert result["spacy_doc"].text == sample_text


def test_sklearn_intent_classifier_process():
clf = SklearnIntentClassifier()
clf.model = MagicMock()
clf.model.classes_ = ["order_pizza", "greet"]
clf.model.predict_proba.return_value = [[0.8, 0.2]]
message = {"text": "Order pizza", "spacy_doc": MagicMock(vector=[1.0, 2.0])}
result = clf.process(message)
assert "intent" in result
assert "intent_ranking" in result


def test_tf_intent_classifier_process():
clf = TfIntentClassifier()
clf.model = MagicMock()
clf.label_encoder = MagicMock()
clf.label_encoder.classes_ = ["order_pizza", "greet"]
clf.graph = MagicMock()
clf.model.predict.return_value = [[0.7, 0.3]]
message = {"text": "Order pizza"}
with patch.object(clf, "nlp", MagicMock()):
result = clf.process(message)
assert "intent" in result
assert "intent_ranking" in result


def test_crf_entity_extractor_process():
extractor = CRFEntityExtractor()
extractor.tagger = MagicMock()
extractor.tagger.tag.return_value = ["B-pizza_size", "O", "B-pizza_topping"]
message = {"text": "large pepperoni", "spacy_doc": MagicMock()}
with patch.object(extractor, "pos_tagger", return_value=[("large", "JJ"), ("pepperoni", "NN")]):
with patch.object(extractor, "sent_to_features", return_value=[["feature1"], ["feature2"]]):
result = extractor.process(message)
assert "entities" in result


def test_synonym_replacer_process():
synonyms = {"big": "large"}
replacer = SynonymReplacer(synonyms=synonyms)
message = {"entities": {"pizza_size": "big"}}
result = replacer.process(message)
assert result["entities"]["pizza_size"] == "large"


def test_zero_shot_nlu_openai_process():
zsnlu = ZeroShotNLUOpenAI(intents=["order_pizza"], entities=["pizza_size"])
zsnlu.chain = MagicMock()
zsnlu.chain.invoke.return_value = {"intent": "order_pizza", "entities": {"pizza_size": "large"}}
message = {"text": "I want a large pizza"}
result = zsnlu.process(message)
assert result["intent"]["intent"] == "order_pizza"
assert result["entities"]["pizza_size"] == "large"