Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,21 @@ class AuronSparkTestSettings extends SparkTestSettings {

enableSuite[AuronTypedImperativeAggregateSuite]

enableSuite[AuronDataFrameSuite]
// Auron-specific implementations of these tests are provided above
.exclude("repartitionByRange")
.exclude("distributeBy and localSort")
.exclude("reuse exchange")
.exclude("SPARK-22520: support code generation for large CaseWhen")
.exclude("SPARK-27439: Explain result should match collected result after view change")
// These tests fail due to Auron native execution differences
.exclude("SPARK-28067: Aggregate sum should not return wrong results for decimal overflow")
.exclude("SPARK-35955: Aggregate avg should not return wrong results for decimal overflow")
.exclude("NaN is greater than all other non-NaN numeric values")
.exclude("SPARK-20897: cached self-join should not fail")
.exclude("SPARK-22271: mean overflows and returns null for some decimal variables")
.exclude("SPARK-32764: -0.0 and 0.0 should be equal")

// Will be implemented in the future.
override def getSQLQueryTestSettings = new SQLQueryTestSettings {
override def getResourceFilePath: String = ???
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,280 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql

import java.io.ByteArrayOutputStream

import scala.util.Random

import org.apache.spark.sql.catalyst.expressions.{EqualTo, Expression}
import org.apache.spark.sql.execution.auron.plan.{NativeAggExec, NativeShuffleExchangeExec}
import org.apache.spark.sql.execution.exchange.ReusedExchangeExec
import org.apache.spark.sql.functions._
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.test.SQLTestData.TestData2

class AuronDataFrameSuite extends DataFrameSuite with SparkQueryTestsBase {

testAuron("repartitionByRange") {
val partitionNum = 10
withSQLConf(
SQLConf.ADAPTIVE_EXECUTION_ENABLED.key -> "false",
SQLConf.SHUFFLE_PARTITIONS.key -> partitionNum.toString) {
import testImplicits._
val data1d = Random.shuffle(0.to(partitionNum - 1))
val data2d = data1d.map(i => (i, data1d.size - i))

checkAnswer(
data1d
.toDF("val")
.repartitionByRange(data1d.size, $"val".asc)
.select(spark_partition_id().as("id"), $"val"),
data1d.map(i => Row(i, i)))

checkAnswer(
data1d
.toDF("val")
.repartitionByRange(data1d.size, $"val".desc)
.select(spark_partition_id().as("id"), $"val"),
data1d.map(i => Row(i, data1d.size - 1 - i)))

checkAnswer(
data1d
.toDF("val")
.repartitionByRange(data1d.size, lit(42))
.select(spark_partition_id().as("id"), $"val"),
data1d.map(i => Row(0, i)))

checkAnswer(
data1d
.toDF("val")
.repartitionByRange(data1d.size, lit(null), $"val".asc, rand())
.select(spark_partition_id().as("id"), $"val"),
data1d.map(i => Row(i, i)))

checkAnswer(
data2d
.toDF("a", "b")
.repartitionByRange(data2d.size, $"a".desc, $"b")
.select(spark_partition_id().as("id"), $"a", $"b"),
data2d
.toDF("a", "b")
.repartitionByRange(data2d.size, $"a".desc, $"b".asc)
.select(spark_partition_id().as("id"), $"a", $"b"))

intercept[IllegalArgumentException] {
data1d.toDF("val").repartitionByRange(data1d.size)
}
intercept[IllegalArgumentException] {
data1d.toDF("val").repartitionByRange(data1d.size, Seq.empty: _*)
}
}
}

testAuron("distributeBy and localSort") {
import testImplicits._
val data = spark.sparkContext.parallelize((1 to 100).map(i => TestData2(i % 10, i))).toDF()

var partitionNum = 1
val original = testData.repartition(partitionNum)
assert(original.rdd.partitions.length == partitionNum)

val df6 = data.repartition(partitionNum, $"a").sortWithinPartitions("b")
df6.rdd.foreachPartition { p =>
var previousValue: Int = -1
var allSequential: Boolean = true
p.foreach { r =>
val v: Int = r.getInt(1)
if (previousValue != -1) {
if (previousValue > v) throw new Exception("Partition is not ordered.")
if (v - 1 != previousValue) allSequential = false
}
previousValue = v
}
if (!allSequential) {
throw new Exception("Partition should contain all sequential values")
}
}

partitionNum = 5
withSQLConf(
SQLConf.ADAPTIVE_EXECUTION_ENABLED.key -> "false",
SQLConf.SHUFFLE_PARTITIONS.key -> partitionNum.toString) {
val df = original.repartition(partitionNum, $"key")
assert(df.rdd.partitions.length == partitionNum)
checkAnswer(original.select(), df.select())

val df4 = data.repartition(partitionNum, $"a").sortWithinPartitions($"b".desc)
df4.rdd.foreachPartition { p =>
if (p.hasNext) {
var previousValue: Int = -1
var allSequential: Boolean = true
p.foreach { r =>
val v: Int = r.getInt(1)
if (previousValue != -1) {
if (previousValue < v) throw new Exception("Partition is not ordered.")
if (v + 1 != previousValue) allSequential = false
}
previousValue = v
}
if (allSequential) throw new Exception("Partition should not be globally ordered")
}
}
}

partitionNum = 10
withSQLConf(
SQLConf.ADAPTIVE_EXECUTION_ENABLED.key -> "false",
SQLConf.SHUFFLE_PARTITIONS.key -> partitionNum.toString) {
val df2 = original.repartition(partitionNum, $"key")
assert(df2.rdd.partitions.length == partitionNum)
checkAnswer(original.select(), df2.select())
}

val df3 = testData.repartition($"key").groupBy("key").count()
verifyNonExchangingAgg(df3)
verifyNonExchangingAgg(
testData
.repartition($"key", $"value")
.groupBy("key", "value")
.count())

verifyExchangingAgg(
testData
.repartition($"key", $"value")
.groupBy("key")
.count())

partitionNum = 2
withSQLConf(
SQLConf.ADAPTIVE_EXECUTION_ENABLED.key -> "false",
SQLConf.SHUFFLE_PARTITIONS.key -> partitionNum.toString) {
val df5 = data.repartition(partitionNum, $"a").sortWithinPartitions($"b".asc, $"a".asc)
df5.rdd.foreachPartition { p =>
var previousValue: Int = -1
var allSequential: Boolean = true
p.foreach { r =>
val v: Int = r.getInt(1)
if (previousValue != -1) {
if (previousValue > v) throw new Exception("Partition is not ordered.")
if (v - 1 != previousValue) allSequential = false
}
previousValue = v
}
if (allSequential) throw new Exception("Partition should not be all sequential")
}
}
}

testAuron("reuse exchange") {
withSQLConf(SQLConf.AUTO_BROADCASTJOIN_THRESHOLD.key -> "2") {
val df = spark.range(100).toDF()
val join = df.join(df, "id")
checkAnswer(join, df)
val shuffleCount = collect(join.queryExecution.executedPlan) {
case e: NativeShuffleExchangeExec =>
true
}.size
assert(shuffleCount === 1, s"Expected 1 shuffle exchange, got $shuffleCount")
assert(collect(join.queryExecution.executedPlan) { case e: ReusedExchangeExec =>
true
}.size === 1)
val broadcasted = broadcast(join)
val join2 = join.join(broadcasted, "id").join(broadcasted, "id")
checkAnswer(join2, df)
val shuffleCount2 = collect(join2.queryExecution.executedPlan) {
case e: NativeShuffleExchangeExec =>
true
}.size
assert(shuffleCount2 == 1, s"Expected 1 shuffle exchange in join2, got $shuffleCount2")
assert(collect(join2.queryExecution.executedPlan) { case e: ReusedExchangeExec =>
true
}.size == 4)
}
}

testAuron("SPARK-22520: support code generation for large CaseWhen") {
import org.apache.spark.sql.catalyst.dsl.expressions.StringToAttributeConversionHelper
val N = 30
var expr1 = when(equalizer($"id", lit(0)), 0)
var expr2 = when(equalizer($"id", lit(0)), 10)
(1 to N).foreach { i =>
expr1 = expr1.when(equalizer($"id", lit(i)), -i)
expr2 = expr2.when(equalizer($"id", lit(i + 10)), i)
}
val df = spark.range(1).select(expr1, expr2.otherwise(0))
checkAnswer(df, Row(0, 10) :: Nil)
}

testAuron("SPARK-27439: Explain result should match collected result after view change") {
withTempView("test", "test2", "tmp") {
spark.range(10).createOrReplaceTempView("test")
spark.range(5).createOrReplaceTempView("test2")
spark.sql("select * from test").createOrReplaceTempView("tmp")
val df = spark.sql("select * from tmp")
spark.sql("select * from test2").createOrReplaceTempView("tmp")

val captured = new ByteArrayOutputStream()
Console.withOut(captured) {
df.explain(extended = true)
}
checkAnswer(df, spark.range(10).toDF)
val output = captured.toString
assert(output.contains("""== Parsed Logical Plan ==
|'Project [*]
|+- 'UnresolvedRelation [tmp]""".stripMargin))
}
}

private def withExpr(newExpr: Expression): Column = new Column(newExpr)

def equalizer(expr: Expression, other: Any): Column = withExpr {
val right = lit(other).expr
if (expr == right) {
logWarning(
s"Constructing trivially true equals predicate, '$expr = $right'. " +
"Perhaps you need to use aliases.")
}
EqualTo(expr, right)
}

private def verifyNonExchangingAgg(df: DataFrame): Unit = {
var atFirstAgg: Boolean = false
df.queryExecution.executedPlan.foreach {
case _: NativeAggExec =>
atFirstAgg = !atFirstAgg
case _ =>
if (atFirstAgg) {
fail("Should not have operators between the two aggregations")
}
}
}

private def verifyExchangingAgg(df: DataFrame): Unit = {
var atFirstAgg: Boolean = false
df.queryExecution.executedPlan.foreach {
case _: NativeAggExec =>
if (atFirstAgg) {
fail("Should not have back to back Aggregates")
}
atFirstAgg = true
case _: NativeShuffleExchangeExec =>
atFirstAgg = false
case _ =>
}
}
}
Loading