Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/user-guide/latest/configs.md
Original file line number Diff line number Diff line change
Expand Up @@ -278,6 +278,7 @@ These settings can be used to determine which parts of the plan are accelerated
| `spark.comet.expression.MakeDecimal.enabled` | Enable Comet acceleration for `MakeDecimal` | true |
| `spark.comet.expression.MapEntries.enabled` | Enable Comet acceleration for `MapEntries` | true |
| `spark.comet.expression.MapFromArrays.enabled` | Enable Comet acceleration for `MapFromArrays` | true |
| `spark.comet.expression.MapFromEntries.enabled` | Enable Comet acceleration for `MapFromEntries` | true |
| `spark.comet.expression.MapKeys.enabled` | Enable Comet acceleration for `MapKeys` | true |
| `spark.comet.expression.MapValues.enabled` | Enable Comet acceleration for `MapValues` | true |
| `spark.comet.expression.Md5.enabled` | Enable Comet acceleration for `Md5` | true |
Expand Down
22 changes: 21 additions & 1 deletion fuzz-testing/src/main/scala/org/apache/comet/fuzz/Meta.scala
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,19 @@ case class Function(name: String, signatures: Seq[FunctionSignature])

object Meta {

val primitiveSparkTypes: Seq[SparkType] = Seq(
SparkBooleanType,
SparkBinaryType,
SparkStringType,
SparkByteType,
SparkShortType,
SparkIntType,
SparkLongType,
SparkFloatType,
SparkDoubleType,
SparkDateType,
SparkTimestampType)

val dataTypes: Seq[(DataType, Double)] = Seq(
(DataTypes.BooleanType, 0.1),
(DataTypes.ByteType, 0.2),
Expand Down Expand Up @@ -212,7 +225,14 @@ object Meta {
createFunctionWithInputTypes("map_values", Seq(SparkMapType(SparkAnyType, SparkAnyType))),
createFunctionWithInputTypes(
"map_from_arrays",
Seq(SparkArrayType(SparkAnyType), SparkArrayType(SparkAnyType))))
Seq(SparkArrayType(SparkAnyType), SparkArrayType(SparkAnyType))),
createFunctionWithInputTypes(
"map_from_entries",
Seq(
SparkArrayType(
SparkStructType(Seq(
SparkTypeOneOf(primitiveSparkTypes.filterNot(_ == SparkBinaryType)),
SparkTypeOneOf(primitiveSparkTypes.filterNot(_ == SparkBinaryType))))))))

// Predicate expressions (corresponds to predicateExpressions in QueryPlanSerde)
val predicateScalarFunc: Seq[Function] = Seq(
Expand Down
2 changes: 2 additions & 0 deletions native/core/src/execution/jni_api.rs
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ use datafusion_spark::function::datetime::date_add::SparkDateAdd;
use datafusion_spark::function::datetime::date_sub::SparkDateSub;
use datafusion_spark::function::hash::sha1::SparkSha1;
use datafusion_spark::function::hash::sha2::SparkSha2;
use datafusion_spark::function::map::map_from_entries::MapFromEntries;
use datafusion_spark::function::math::expm1::SparkExpm1;
use datafusion_spark::function::math::hex::SparkHex;
use datafusion_spark::function::string::char::CharFunc;
Expand Down Expand Up @@ -342,6 +343,7 @@ fn register_datafusion_spark_function(session_ctx: &SessionContext) {
session_ctx.register_udf(ScalarUDF::new_from_impl(SparkConcat::default()));
session_ctx.register_udf(ScalarUDF::new_from_impl(SparkBitwiseNot::default()));
session_ctx.register_udf(ScalarUDF::new_from_impl(SparkHex::default()));
session_ctx.register_udf(ScalarUDF::new_from_impl(MapFromEntries::default()));
}

/// Prepares arrow arrays for output.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,8 @@ object QueryPlanSerde extends Logging with CometExprShim {
classOf[MapKeys] -> CometMapKeys,
classOf[MapEntries] -> CometMapEntries,
classOf[MapValues] -> CometMapValues,
classOf[MapFromArrays] -> CometMapFromArrays)
classOf[MapFromArrays] -> CometMapFromArrays,
classOf[MapFromEntries] -> CometMapFromEntries)

private val structExpressions: Map[Class[_ <: Expression], CometExpressionSerde[_]] = Map(
classOf[CreateNamedStruct] -> CometCreateNamedStruct,
Expand Down
26 changes: 25 additions & 1 deletion spark/src/main/scala/org/apache/comet/serde/maps.scala
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
package org.apache.comet.serde

import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.types.{ArrayType, MapType}
import org.apache.spark.sql.types._

import org.apache.comet.serde.QueryPlanSerde.{exprToProtoInternal, optExprWithInfo, scalarFunctionExprToProto, scalarFunctionExprToProtoWithReturnType}

Expand Down Expand Up @@ -89,3 +89,27 @@ object CometMapFromArrays extends CometExpressionSerde[MapFromArrays] {
optExprWithInfo(mapFromArraysExpr, expr, expr.children: _*)
}
}

object CometMapFromEntries extends CometScalarFunction[MapFromEntries]("map_from_entries") {
val keyUnsupportedReason = "Using BinaryType as Map keys is not allowed in map_from_entries"
val valueUnsupportedReason = "Using BinaryType as Map values is not allowed in map_from_entries"

private def containsBinary(dataType: DataType): Boolean = {
dataType match {
case BinaryType => true
case StructType(fields) => fields.exists(field => containsBinary(field.dataType))
case ArrayType(elementType, _) => containsBinary(elementType)
case _ => false
}
}

override def getSupportLevel(expr: MapFromEntries): SupportLevel = {
if (containsBinary(expr.dataType.keyType)) {
return Incompatible(Some(keyUnsupportedReason))
}
if (containsBinary(expr.dataType.valueType)) {
return Incompatible(Some(valueUnsupportedReason))
}
Compatible(None)
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,9 @@ import org.apache.hadoop.fs.Path
import org.apache.spark.sql.CometTestBase
import org.apache.spark.sql.functions._
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.BinaryType

import org.apache.comet.serde.CometMapFromEntries
import org.apache.comet.testing.{DataGenOptions, ParquetGenerator, SchemaGenOptions}

class CometMapExpressionSuite extends CometTestBase {
Expand Down Expand Up @@ -157,4 +159,90 @@ class CometMapExpressionSuite extends CometTestBase {
}
}

test("map_from_entries - convert from Parquet") {
withTempDir { dir =>
val path = new Path(dir.toURI.toString, "test.parquet")
val filename = path.toString
val random = new Random(42)
withSQLConf(CometConf.COMET_ENABLED.key -> "false") {
val schemaGenOptions =
SchemaGenOptions(
generateArray = false,
generateStruct = false,
primitiveTypes = SchemaGenOptions.defaultPrimitiveTypes.filterNot(_ == BinaryType))
val dataGenOptions = DataGenOptions(allowNull = false, generateNegativeZero = false)
ParquetGenerator.makeParquetFile(
random,
spark,
filename,
100,
schemaGenOptions,
dataGenOptions)
}
withSQLConf(
CometConf.COMET_NATIVE_SCAN_ENABLED.key -> "false",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@kazantsev-maksim Could you also add a test where native scan is enabled

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks @andygrove. I have added a test

CometConf.COMET_SPARK_TO_ARROW_ENABLED.key -> "true",
CometConf.COMET_CONVERT_FROM_PARQUET_ENABLED.key -> "true") {
val df = spark.read.parquet(filename)
df.createOrReplaceTempView("t1")
for (field <- df.schema.fieldNames) {
checkSparkAnswerAndOperator(
spark.sql(
s"SELECT map_from_entries(array(struct($field as a, $field as b))) FROM t1"))
}
}
}
}

test("map_from_entries - native Parquet reader") {
withTempDir { dir =>
val path = new Path(dir.toURI.toString, "test.parquet")
val filename = path.toString
val random = new Random(42)
withSQLConf(CometConf.COMET_ENABLED.key -> "false") {
val schemaGenOptions =
SchemaGenOptions(
generateArray = false,
generateStruct = false,
primitiveTypes = SchemaGenOptions.defaultPrimitiveTypes.filterNot(_ == BinaryType))
val dataGenOptions = DataGenOptions(allowNull = false, generateNegativeZero = false)
ParquetGenerator.makeParquetFile(
random,
spark,
filename,
100,
schemaGenOptions,
dataGenOptions)
}
val df = spark.read.parquet(filename)
df.createOrReplaceTempView("t1")
for (field <- df.schema.fieldNames) {
checkSparkAnswerAndOperator(
spark.sql(s"SELECT map_from_entries(array(struct($field as a, $field as b))) FROM t1"))
}
}
}

test("map_from_entries - fallback for binary type") {
def fallbackReason(reason: String) = {
if (CometConf.COMET_NATIVE_SCAN_IMPL.key == CometConf.SCAN_NATIVE_COMET || sys.env
.getOrElse("COMET_PARQUET_SCAN_IMPL", "") == CometConf.SCAN_NATIVE_COMET) {
"Unsupported schema"
} else {
reason
}
}
val table = "t2"
withTable(table) {
sql(
s"create table $table using parquet as select cast(array() as array<binary>) as c1 from range(10)")
checkSparkAnswerAndFallbackReason(
sql(s"select map_from_entries(array(struct(c1, 0))) from $table"),
fallbackReason(CometMapFromEntries.keyUnsupportedReason))
checkSparkAnswerAndFallbackReason(
sql(s"select map_from_entries(array(struct(0, c1))) from $table"),
fallbackReason(CometMapFromEntries.valueUnsupportedReason))
}
}

}