Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 13 additions & 3 deletions src/main/python/systemds/scuro/dataloader/video_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,13 @@ def extract(self, file: str, index: Optional[Union[str, List[str]]] = None):
self.fps, length, width, height, num_channels
)

frames = []
num_frames = (length + frame_interval - 1) // frame_interval

stacked_frames = np.zeros(
(num_frames, height, width, num_channels), dtype=self._data_type
)

frame_idx = 0
idx = 0
while cap.isOpened():
ret, frame = cap.read()
Expand All @@ -81,7 +87,11 @@ def extract(self, file: str, index: Optional[Union[str, List[str]]] = None):
if idx % frame_interval == 0:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = frame.astype(self._data_type) / 255.0
frames.append(frame)
stacked_frames[frame_idx] = frame
frame_idx += 1
idx += 1

self.data.append(np.stack(frames))
if frame_idx < num_frames:
stacked_frames = stacked_frames[:frame_idx]

self.data.append(stacked_frames)
22 changes: 19 additions & 3 deletions src/main/python/systemds/scuro/modality/modality.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,9 +88,8 @@ def update_metadata(self):
):
return

md_copy = deepcopy(self.metadata)
self.metadata = {}
for i, (md_k, md_v) in enumerate(md_copy.items()):
for i, (md_k, md_v) in enumerate(self.metadata.items()):
md_v = selective_copy_metadata(md_v)
updated_md = self.modality_type.update_metadata(md_v, self.data[i])
self.metadata[md_k] = updated_md
if i == 0:
Expand Down Expand Up @@ -183,3 +182,20 @@ def is_aligned(self, other_modality):
break

return aligned


def selective_copy_metadata(metadata):
if isinstance(metadata, dict):
new_md = {}
for k, v in metadata.items():
if k == "data_layout":
new_md[k] = v.copy() if isinstance(v, dict) else v
elif isinstance(v, np.ndarray):
new_md[k] = v
else:
new_md[k] = selective_copy_metadata(v)
return new_md
elif isinstance(metadata, (list, tuple)):
return type(metadata)(selective_copy_metadata(item) for item in metadata)
else:
return metadata
19 changes: 0 additions & 19 deletions src/main/python/systemds/scuro/modality/unimodal_modality.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,8 +146,6 @@ def apply_representation(self, representation):
else:
original_lengths.append(d.shape[0])

new_modality.data = self.l2_normalize_features(new_modality.data)

if len(original_lengths) > 0 and min(original_lengths) < max(original_lengths):
target_length = max(original_lengths)
padded_embeddings = []
Expand Down Expand Up @@ -194,20 +192,3 @@ def apply_representation(self, representation):
new_modality.transform_time = time.time() - start
new_modality.self_contained = representation.self_contained
return new_modality

def l2_normalize_features(self, feature_list):
normalized_features = []
for feature in feature_list:
original_shape = feature.shape
flattened = feature.flatten()

norm = np.linalg.norm(flattened)
if norm > 0:
normalized_flat = flattened / norm
normalized_feature = normalized_flat.reshape(original_shape)
else:
normalized_feature = feature

normalized_features.append(normalized_feature)

return normalized_features
12 changes: 9 additions & 3 deletions src/main/python/systemds/scuro/representations/fusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,19 +68,25 @@ def transform(self, modalities: List[Modality]):
return self.execute(mods)

def transform_with_training(self, modalities: List[Modality], task):
fusion_train_indices = task.fusion_train_indices

train_modalities = []
for modality in modalities:
train_data = [
d for i, d in enumerate(modality.data) if i in task.train_indices
d for i, d in enumerate(modality.data) if i in fusion_train_indices
]
train_modality = TransformedModality(modality, self)
train_modality.data = copy.deepcopy(train_data)
train_modalities.append(train_modality)

transformed_train = self.execute(
train_modalities, task.labels[task.train_indices]
train_modalities, task.labels[fusion_train_indices]
)
transformed_val = self.transform_data(modalities, task.val_indices)

all_other_indices = [
i for i in range(len(modalities[0].data)) if i not in fusion_train_indices
]
transformed_other = self.transform_data(modalities, all_other_indices)

transformed_data = np.zeros(
(len(modalities[0].data), transformed_train.shape[1])
Expand Down
49 changes: 39 additions & 10 deletions src/main/python/systemds/scuro/representations/lstm.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,15 +42,15 @@ def __init__(
depth=1,
dropout_rate=0.1,
learning_rate=0.001,
epochs=50,
epochs=20,
batch_size=32,
):
parameters = {
"width": [128, 256, 512],
"depth": [1, 2, 3],
"dropout_rate": [0.1, 0.2, 0.3, 0.4, 0.5],
"learning_rate": [0.001, 0.0001, 0.01, 0.1],
"epochs": [50, 100, 200],
"epochs": [10, 2050, 100, 200],
"batch_size": [8, 16, 32, 64, 128],
}

Expand All @@ -70,6 +70,7 @@ def __init__(
self.num_classes = None
self.is_trained = False
self.model_state = None
self.is_multilabel = False

self._set_random_seeds()

Expand Down Expand Up @@ -166,18 +167,32 @@ def execute(self, modalities: List[Modality], labels: np.ndarray = None):
X = self._prepare_data(modalities)
y = np.array(labels)

if y.ndim == 2 and y.shape[1] > 1:
self.is_multilabel = True
self.num_classes = y.shape[1]
else:
self.is_multilabel = False
if y.ndim == 2:
y = y.ravel()
self.num_classes = len(np.unique(y))

self.input_dim = X.shape[2]
self.num_classes = len(np.unique(y))

self.model = self._build_model(self.input_dim, self.num_classes)
device = get_device()
self.model.to(device)

criterion = nn.CrossEntropyLoss()
if self.is_multilabel:
criterion = nn.BCEWithLogitsLoss()
else:
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate)

X_tensor = torch.FloatTensor(X).to(device)
y_tensor = torch.LongTensor(y).to(device)
if self.is_multilabel:
y_tensor = torch.FloatTensor(y).to(device)
else:
y_tensor = torch.LongTensor(y).to(device)

dataset = TensorDataset(X_tensor, y_tensor)
dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
Expand All @@ -202,15 +217,23 @@ def execute(self, modalities: List[Modality], labels: np.ndarray = None):
"state_dict": self.model.state_dict(),
"input_dim": self.input_dim,
"num_classes": self.num_classes,
"is_multilabel": self.is_multilabel,
"width": self.width,
"depth": self.depth,
"dropout_rate": self.dropout_rate,
}

self.model.eval()
all_features = []
with torch.no_grad():
features, _ = self.model(X_tensor)
return features.cpu().numpy()
inference_dataloader = DataLoader(
TensorDataset(X_tensor), batch_size=self.batch_size, shuffle=False
)
for (batch_X,) in inference_dataloader:
features, _ = self.model(batch_X)
all_features.append(features.cpu())

return torch.cat(all_features, dim=0).numpy()

def apply_representation(self, modalities: List[Modality]) -> np.ndarray:
if not self.is_trained or self.model is None:
Expand All @@ -222,12 +245,17 @@ def apply_representation(self, modalities: List[Modality]) -> np.ndarray:
self.model.to(device)

X_tensor = torch.FloatTensor(X).to(device)

all_features = []
self.model.eval()
with torch.no_grad():
features, _ = self.model(X_tensor)
inference_dataloader = DataLoader(
TensorDataset(X_tensor), batch_size=self.batch_size, shuffle=False
)
for (batch_X,) in inference_dataloader:
features, _ = self.model(batch_X)
all_features.append(features.cpu())

return features.cpu().numpy()
return torch.cat(all_features, dim=0).numpy()

def get_model_state(self) -> Dict[str, Any]:
return self.model_state
Expand All @@ -236,6 +264,7 @@ def set_model_state(self, state: Dict[str, Any]):
self.model_state = state
self.input_dim = state["input_dim"]
self.num_classes = state["num_classes"]
self.is_multilabel = state.get("is_multilabel", False)

self.model = self._build_model(self.input_dim, self.num_classes)
self.model.load_state_dict(state["state_dict"])
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,15 +40,15 @@ def __init__(
num_heads=8,
dropout=0.1,
batch_size=32,
num_epochs=50,
num_epochs=20,
learning_rate=0.001,
):
parameters = {
"hidden_dim": [32, 128, 256, 384, 512, 768],
"num_heads": [2, 4, 8, 12],
"dropout": [0.0, 0.1, 0.2, 0.3, 0.4],
"batch_size": [8, 16, 32, 64, 128],
"num_epochs": [50, 100, 150, 200],
"num_epochs": [10, 20, 50, 100, 150, 200],
"learning_rate": [1e-5, 1e-4, 1e-3, 1e-2],
}
super().__init__("AttentionFusion", parameters)
Expand All @@ -69,6 +69,7 @@ def __init__(
self.num_classes = None
self.is_trained = False
self.model_state = None
self.is_multilabel = False

self._set_random_seeds()

Expand Down Expand Up @@ -122,9 +123,17 @@ def execute(self, modalities: List[Modality], labels: np.ndarray = None):
inputs, input_dimensions, max_sequence_length = self._prepare_data(modalities)
y = np.array(labels)

if y.ndim == 2 and y.shape[1] > 1:
self.is_multilabel = True
self.num_classes = y.shape[1]
else:
self.is_multilabel = False
if y.ndim == 2:
y = y.ravel()
self.num_classes = len(np.unique(y))

self.input_dim = input_dimensions
self.max_sequence_length = max_sequence_length
self.num_classes = len(np.unique(y))

self.encoder = MultiModalAttentionFusion(
self.input_dim,
Expand All @@ -142,7 +151,10 @@ def execute(self, modalities: List[Modality], labels: np.ndarray = None):
self.encoder.to(device)
self.classification_head.to(device)

criterion = nn.CrossEntropyLoss()
if self.is_multilabel:
criterion = nn.BCEWithLogitsLoss()
else:
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(
list(self.encoder.parameters())
+ list(self.classification_head.parameters()),
Expand All @@ -151,7 +163,11 @@ def execute(self, modalities: List[Modality], labels: np.ndarray = None):

for modality_name in inputs:
inputs[modality_name] = inputs[modality_name].to(device)
labels_tensor = torch.from_numpy(y).long().to(device)

if self.is_multilabel:
labels_tensor = torch.from_numpy(y).float().to(device)
else:
labels_tensor = torch.from_numpy(y).long().to(device)

dataset_inputs = []
for i in range(len(y)):
Expand Down Expand Up @@ -197,9 +213,17 @@ def execute(self, modalities: List[Modality], labels: np.ndarray = None):
optimizer.step()

total_loss += loss.item()
_, predicted = torch.max(logits.data, 1)
total_correct += (predicted == batch_labels).sum().item()
total_samples += batch_labels.size(0)

if self.is_multilabel:
predicted = (torch.sigmoid(logits) > 0.5).float()
correct = (predicted == batch_labels).float()
hamming_acc = correct.mean()
total_correct += hamming_acc.item() * batch_labels.size(0)
total_samples += batch_labels.size(0)
else:
_, predicted = torch.max(logits.data, 1)
total_correct += (predicted == batch_labels).sum().item()
total_samples += batch_labels.size(0)

self.is_trained = True

Expand All @@ -214,10 +238,24 @@ def execute(self, modalities: List[Modality], labels: np.ndarray = None):
"dropout": self.dropout,
}

all_features = []

with torch.no_grad():
encoder_output = self.encoder(inputs)
for batch_start in range(
0, len(inputs[list(inputs.keys())[0]]), self.batch_size
):
batch_end = min(
batch_start + self.batch_size, len(inputs[list(inputs.keys())[0]])
)

batch_inputs = {}
for modality_name, tensor in inputs.items():
batch_inputs[modality_name] = tensor[batch_start:batch_end]

encoder_output = self.encoder(batch_inputs)
all_features.append(encoder_output["fused"].cpu())

return encoder_output["fused"].cpu().numpy()
return torch.cat(all_features, dim=0).numpy()

def apply_representation(self, modalities: List[Modality]) -> np.ndarray:
if not self.is_trained or self.encoder is None:
Expand All @@ -232,10 +270,23 @@ def apply_representation(self, modalities: List[Modality]) -> np.ndarray:
inputs[modality_name] = inputs[modality_name].to(device)

self.encoder.eval()
all_features = []

with torch.no_grad():
encoder_output = self.encoder(inputs)
batch_size = self.batch_size
n_samples = len(inputs[list(inputs.keys())[0]])

for batch_start in range(0, n_samples, batch_size):
batch_end = min(batch_start + batch_size, n_samples)

batch_inputs = {}
for modality_name, tensor in inputs.items():
batch_inputs[modality_name] = tensor[batch_start:batch_end]

encoder_output = self.encoder(batch_inputs)
all_features.append(encoder_output["fused"].cpu())

return encoder_output["fused"].cpu().numpy()
return torch.cat(all_features, dim=0).numpy()

def get_model_state(self) -> Dict[str, Any]:
return self.model_state
Expand All @@ -245,6 +296,7 @@ def set_model_state(self, state: Dict[str, Any]):
self.input_dim = state["input_dimensions"]
self.max_sequence_length = state["max_sequence_length"]
self.num_classes = state["num_classes"]
self.is_multilabel = state.get("is_multilabel", False)

self.encoder = MultiModalAttentionFusion(
self.input_dim,
Expand Down
Loading