Iterable Data is a Python library for reading and writing data files row by row in a consistent, iterator-based interface. It provides a unified API for working with various data formats (CSV, JSON, Parquet, XML, etc.) similar to csv.DictReader but supporting many more formats.
This library simplifies data processing and conversion between formats while preserving complex nested data structures (unlike pandas DataFrames which require flattening).
- Unified API: Single interface for reading/writing multiple data formats
 - Automatic Format Detection: Detects file type and compression from filename
 - Support for Compression: Works seamlessly with compressed files
 - Preserves Nested Data: Handles complex nested structures as Python dictionaries
 - DuckDB Integration: Optional DuckDB engine for high-performance queries
 - Pipeline Processing: Built-in pipeline support for data transformation
 - Encoding Detection: Automatic encoding and delimiter detection for text files
 - Bulk Operations: Efficient batch reading and writing
 
- BSON - Binary JSON format
 - JSON - Standard JSON files
 - JSONL/NDJSON - JSON Lines format (one JSON object per line)
 - XML - XML files with configurable tag parsing
 - CSV/TSV - Comma and tab-separated values
 - XLS/XLSX - Microsoft Excel files
 - Parquet - Apache Parquet columnar format
 - ORC - Optimized Row Columnar format
 - Avro - Apache Avro binary format
 - Pickle - Python pickle format
 
- GZip (.gz)
 - BZip2 (.bz2)
 - LZMA (.xz, .lzma)
 - LZ4 (.lz4)
 - ZIP (.zip)
 - Brotli (.br)
 - ZStandard (.zst, .zstd)
 
Python 3.10+
pip install iterabledataOr install from source:
git clone https://github.com/apicrafter/pyiterable.git
cd pyiterable
pip install .from iterable.helpers.detect import open_iterable
# Automatically detects format and compression
source = open_iterable('data.csv.gz')
for row in source:
    print(row)
    # Process your data here
source.close()from iterable.helpers.detect import open_iterable
# Write compressed JSONL file
dest = open_iterable('output.jsonl.zst', mode='w')
for item in my_data:
    dest.write(item)
dest.close()from iterable.helpers.detect import open_iterable
# Read compressed CSV file (supports .gz, .bz2, .xz, .zst, .lz4, .br)
source = open_iterable('data.csv.xz')
n = 0
for row in source:
    n += 1
    # Process row data
    if n % 1000 == 0:
        print(f'Processed {n} rows')
source.close()from iterable.helpers.detect import open_iterable
# Read JSONL file
jsonl_file = open_iterable('data.jsonl')
for row in jsonl_file:
    print(row)
jsonl_file.close()
# Read Parquet file
parquet_file = open_iterable('data.parquet')
for row in parquet_file:
    print(row)
parquet_file.close()
# Read XML file (specify tag name)
xml_file = open_iterable('data.xml', iterableargs={'tagname': 'item'})
for row in xml_file:
    print(row)
xml_file.close()
# Read Excel file
xlsx_file = open_iterable('data.xlsx')
for row in xlsx_file:
    print(row)
xlsx_file.close()from iterable.helpers.detect import open_iterable, detect_file_type
from iterable.helpers.utils import detect_encoding, detect_delimiter
# Detect file type and compression
result = detect_file_type('data.csv.gz')
print(f"Type: {result['datatype']}, Codec: {result['codec']}")
# Detect encoding for CSV files
encoding_info = detect_encoding('data.csv')
print(f"Encoding: {encoding_info['encoding']}, Confidence: {encoding_info['confidence']}")
# Detect delimiter for CSV files
delimiter = detect_delimiter('data.csv', encoding=encoding_info['encoding'])
# Open with detected settings
source = open_iterable('data.csv', iterableargs={
    'encoding': encoding_info['encoding'],
    'delimiter': delimiter
})from iterable.helpers.detect import open_iterable
from iterable.convert.core import convert
# Simple format conversion
convert('input.jsonl.gz', 'output.parquet')
# Convert with options
convert(
    'input.csv.xz',
    'output.jsonl.zst',
    iterableargs={'delimiter': ';', 'encoding': 'utf-8'},
    batch_size=10000
)
# Convert and flatten nested structures
convert(
    'input.jsonl',
    'output.csv',
    is_flatten=True,
    batch_size=50000
)from iterable.helpers.detect import open_iterable
from iterable.pipeline.core import pipeline
source = open_iterable('input.parquet')
destination = open_iterable('output.jsonl.xz', mode='w')
def transform_record(record, state):
    """Transform each record"""
    # Add processing logic
    out = {}
    for key in ['name', 'email', 'age']:
        if key in record:
            out[key] = record[key]
    return out
def progress_callback(stats, state):
    """Called every trigger_on records"""
    print(f"Processed {stats['rec_count']} records, "
          f"Duration: {stats.get('duration', 0):.2f}s")
def final_callback(stats, state):
    """Called when processing completes"""
    print(f"Total records: {stats['rec_count']}")
    print(f"Total time: {stats['duration']:.2f}s")
pipeline(
    source=source,
    destination=destination,
    process_func=transform_record,
    trigger_func=progress_callback,
    trigger_on=1000,
    final_func=final_callback,
    start_state={}
)
source.close()
destination.close()from iterable.datatypes.jsonl import JSONLinesIterable
from iterable.datatypes.bsonf import BSONIterable
from iterable.codecs.gzipcodec import GZIPCodec
from iterable.codecs.lzmacodec import LZMACodec
# Read gzipped JSONL
read_codec = GZIPCodec('input.jsonl.gz', mode='r', open_it=True)
reader = JSONLinesIterable(codec=read_codec)
# Write LZMA compressed BSON
write_codec = LZMACodec('output.bson.xz', mode='wb', open_it=False)
writer = BSONIterable(codec=write_codec, mode='w')
for row in reader:
    writer.write(row)
reader.close()
writer.close()from iterable.helpers.detect import open_iterable
# Use DuckDB engine for CSV, JSON, JSONL files
# Supported formats: csv, jsonl, ndjson, json
# Supported codecs: gz, zstd, zst
source = open_iterable(
    'data.csv.gz',
    engine='duckdb'
)
# DuckDB engine supports totals
total = source.totals()
print(f"Total records: {total}")
for row in source:
    print(row)
source.close()from iterable.helpers.detect import open_iterable
source = open_iterable('input.jsonl')
destination = open_iterable('output.parquet', mode='w')
# Read and write in batches for better performance
batch = []
for row in source:
    batch.append(row)
    if len(batch) >= 10000:
        destination.write_bulk(batch)
        batch = []
# Write remaining records
if batch:
    destination.write_bulk(batch)
source.close()
destination.close()from iterable.helpers.detect import open_iterable
# Read Excel file (specify sheet or page)
xls_file = open_iterable('data.xlsx', iterableargs={'page': 0})
for row in xls_file:
    print(row)
xls_file.close()
# Read specific sheet in XLSX
xlsx_file = open_iterable('data.xlsx', iterableargs={'page': 'Sheet2'})from iterable.helpers.detect import open_iterable
# Parse XML with specific tag name
xml_file = open_iterable(
    'data.xml',
    iterableargs={
        'tagname': 'book',
        'prefix_strip': True  # Strip XML namespace prefixes
    }
)
for item in xml_file:
    print(item)
xml_file.close()from iterable.datatypes.xml import XMLIterable
from iterable.datatypes.parquet import ParquetIterable
from iterable.codecs.bz2codec import BZIP2Codec
# Read compressed XML
read_codec = BZIP2Codec('data.xml.bz2', mode='r')
reader = XMLIterable(codec=read_codec, tagname='page')
# Write to Parquet with schema adaptation
writer = ParquetIterable(
    'output.parquet',
    mode='w',
    use_pandas=False,
    adapt_schema=True,
    batch_size=10000
)
batch = []
for row in reader:
    batch.append(row)
    if len(batch) >= 10000:
        writer.write_bulk(batch)
        batch = []
if batch:
    writer.write_bulk(batch)
reader.close()
writer.close()Opens a file and returns an iterable object.
Parameters:
filename(str): Path to the filemode(str): File mode ('r' for read, 'w' for write)engine(str): Processing engine ('internal' or 'duckdb')codecargs(dict): Arguments for codec initializationiterableargs(dict): Arguments for iterable initialization
Returns: Iterable object for the detected file type
Detects file type and compression codec from filename.
Returns: Dictionary with success, datatype, and codec keys
convert(fromfile, tofile, iterableargs={}, scan_limit=1000, batch_size=50000, silent=True, is_flatten=False)
Converts data between formats.
Parameters:
fromfile(str): Source file pathtofile(str): Destination file pathiterableargs(dict): Options for iterablescan_limit(int): Number of records to scan for schema detectionbatch_size(int): Batch size for bulk operationssilent(bool): Suppress progress outputis_flatten(bool): Flatten nested structures
All iterable objects support:
read()- Read single recordread_bulk(num)- Read multiple recordswrite(record)- Write single recordwrite_bulk(records)- Write multiple recordsreset()- Reset iterator to beginningclose()- Close file handles
The internal engine uses pure Python implementations for all formats. It supports all file types and compression codecs.
The DuckDB engine provides high-performance querying capabilities for supported formats:
- Formats: CSV, JSONL, NDJSON, JSON
 - Codecs: GZIP, ZStandard (.zst)
 - Features: Fast querying, totals counting, SQL-like operations
 
Use engine='duckdb' when opening files:
source = open_iterable('data.csv.gz', engine='duckdb')See the examples directory for more complete examples:
simplewiki/- Processing Wikipedia XML dumps
See the tests directory for comprehensive usage examples and test cases.
This library is used in:
- undatum - Command line data processing tool
 - datacrafter - Data processing ETL engine
 
MIT License
Contributions are welcome! Please feel free to submit pull requests or open issues.
- DuckDB engine support
 - Enhanced format detection
 - Improved compression codec handling
 - Pipeline processing framework
 - Bulk operations support