Skip to content

Introducing Angle type [Issue #88] #169

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 23 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 14 commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
205 changes: 205 additions & 0 deletions Sources/RealModule/Angle.swift
Original file line number Diff line number Diff line change
@@ -0,0 +1,205 @@
//===--- Angle.swift ------------------------------------------*- swift -*-===//
//
// This source file is part of the Swift Numerics open source project
//
// Copyright (c) 2020 Apple Inc. and the Swift Numerics project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

/// A wrapper type for angle operations and functions
///
/// All trigonometric functions expect the argument to be passed as radians (Real), but this is not enforced by the type system.
/// This type serves exactly this purpose, and can be seen as an alternative to the underlying Real implementation.
public struct Angle<T: Real>: Equatable {
public var radians: T
public init(radians: T) { self.radians = radians }
public static func radians(_ val: T) -> Angle<T> { .init(radians: val) }

public var degrees: T { radians * 180 / .pi }
public init(degrees: T) {
let normalized = normalize(degrees, limit: 180)
self.init(radians: normalized * .pi / 180)
}
public static func degrees(_ val: T) -> Angle<T> { .init(degrees: val) }
}

public extension ElementaryFunctions
where Self: Real {
/// See also:
/// -
/// `ElementaryFunctions.cos()`
static func cos(_ angle: Angle<Self>) -> Self {
let normalizedRadians = normalize(angle.radians, limit: .pi)

if -.pi/4 < normalizedRadians && normalizedRadians < .pi/4 {
return Self.cos(normalizedRadians)
}

if normalizedRadians > 3 * .pi / 4 || normalizedRadians < -3 * .pi / 4 {
return -Self.cos(.pi - normalizedRadians)
}

if normalizedRadians >= 0 {
return Self.sin(.pi/2 - normalizedRadians)
}

return Self.sin(normalizedRadians + .pi / 2)
}

/// See also:
/// -
/// `ElementaryFunctions.sin()`
static func sin(_ angle: Angle<Self>) -> Self {
let normalizedRadians = normalize(angle.radians, limit: .pi)

if .pi / 4 < normalizedRadians && normalizedRadians < 3 * .pi / 4 {
return Self.sin(normalizedRadians)
}

if -3 * .pi / 4 < normalizedRadians && normalizedRadians < -.pi / 4 {
return -Self.sin(-normalizedRadians)
}

if normalizedRadians > 3 * .pi / 4 {
return Self.sin(.pi - normalizedRadians)
}

if normalizedRadians < -3 * .pi / 4 {
return -Self.sin(.pi + normalizedRadians)
}

return Self.sin(normalizedRadians)
}

/// See also:
/// -
/// `ElementaryFunctions.tan()`
static func tan(_ angle: Angle<Self>) -> Self {
let sine = sin(angle)
let cosine = cos(angle)

guard cosine != 0 else {
var result = Self.infinity
if sine.sign == .minus {
result.negate()
}
return result
}

return sine / cosine
}
}

public extension Angle {
/// See also:
/// -
/// `ElementaryFunctions.acos()`
static func acos(_ x: T) -> Self { Angle.radians(T.acos(x)) }

/// See also:
/// -
/// `ElementaryFunctions.asin()`
static func asin(_ x: T) -> Self { Angle.radians(T.asin(x)) }

/// See also:
/// -
/// `ElementaryFunctions.atan()`
static func atan(_ x: T) -> Self { Angle.radians(T.atan(x)) }

/// See also:
/// -
/// `RealFunctions.atan2()`
static func atan2(y: T, x: T) -> Self { Angle.radians(T.atan2(y: y, x: x)) }
}

extension Angle: AdditiveArithmetic {
public static var zero: Angle<T> { .radians(0) }

public static func + (lhs: Angle<T>, rhs: Angle<T>) -> Angle<T> {
Angle(radians: lhs.radians + rhs.radians)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This seems unfortunate to me that adding two angles specified in degrees incurs rounding error seven times if I want the result in degrees. I think this dedicated type needs to store values given in degrees as-is if it offers such arithmetic.

Copy link
Author

@jkalias jkalias Dec 14, 2020

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is what I intended with my earlier comment, so degrees and radians are stored separately.
#169 (comment)

We could then switch on all operations performed on the input and essentially handle three cases:

  • degrees with degrees -> perform operation in degrees
  • radians with radians -> perform operation in radians
  • mixed units -> perform in a common unit

I'm not sure whether people agree on that

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

👍 That would yield a superior result in the case of operations performed entirely in degrees or radians.

I wonder if there are alternative designs that can improve the result when working with both degrees and radians. If the type stored both radians and degrees, for example, then you could store the result of "90 degrees plus 1 radian" exactly. I haven't thought through the remainder of the design, but I offer it for your consideration here.

}

public static func += (lhs: inout Angle<T>, rhs: Angle<T>) {
lhs.radians += rhs.radians
}

public static func - (lhs: Angle<T>, rhs: Angle<T>) -> Angle<T> {
Angle(radians: lhs.radians - rhs.radians)
}

public static func -= (lhs: inout Angle<T>, rhs: Angle<T>) {
lhs.radians -= rhs.radians
}
}

public extension Angle {
static func * (lhs: Angle<T>, rhs: T) -> Angle<T> {
Angle(radians: lhs.radians * rhs)
}

static func *= (lhs: inout Angle<T>, rhs: T) {
lhs.radians *= rhs
}

static func * (lhs: T, rhs: Angle<T>) -> Angle<T> {
Angle(radians: rhs.radians * lhs)
}

static func / (lhs: Angle<T>, rhs: T) -> Angle<T> {
assert(rhs != 0)
return Angle(radians: lhs.radians / rhs)
}

static func /= (lhs: inout Angle<T>, rhs: T) {
assert(rhs != 0)
lhs.radians /= rhs
}
}

public extension Angle {
/// Checks whether the current angle is contained within a given closed range.
///
/// - Parameters:
///
/// - range: The closed angular range within which containment is checked.
func contained(in range: ClosedRange<Angle<T>>) -> Bool {
Copy link
Contributor

@xwu xwu Dec 14, 2020

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What is the value of these APIs over what's written in the body? I would suggest not including these separately; the existing forms are canonical and straightforward enough to write.

What @NevinBR is getting at, I think, is that 361 degrees is contained "between" 0 degrees and 2 degrees. This does not offer that functionality, and convenient access to it would be useful. It would need to be distinguished from the functionality here, though, through some thoughtful naming.

For API naming purposes, incidentally, the function would need to be named isContained; and for style purposes, the access modifier public should be specified on each member (and therefore is not necessary on the extension itself).

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What @NevinBR is getting at, I think, is that 361 degrees is contained "between" 0 degrees and 2 degrees. This does not offer that functionality.

Additionally, 175º and -175º are both “between” 170º and -170º (but they are not between -170º and 170º).

Copy link
Author

@jkalias jkalias Dec 14, 2020

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So, essentially you mean @NevinBR that the containment should be performed on the normalized angular range, right?

361º -> normalized to 1º -> contained in -10º...10º
361º -> normalized to 1º -> not contained in 10º...-10º
175º -> normalized to 175º -> contained in -170º...170º
-175º -> normalized to -175º -> contained in -170º...170º
175º -> normalized to 175º -> not contained in 170º...-170º
-175º -> normalized to -175º -> not contained in 170º...-170º

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I’m not entirely sure how normalization should come into play. Probably yes normalized angles should be used for comparison / containment, and if someone wants to work with the unnormalized value they can extract it and do so manually.

However, several of your examples do not behave as I would expect:

175º -> normalized to 175º -> contained in -170º...170º
-175º -> normalized to -175º -> contained in -170º...170º
175º -> normalized to 175º -> not contained in 170º...-170º
-175º -> normalized to -175º -> not contained in 170º...-170º

These should be:

175º -> normalized to 175º -> not contained in -170º...170º
-175º -> normalized to -175º -> not contained in -170º...170º
175º -> normalized to 175º -> yes contained in 170º...-170º
-175º -> normalized to -175º -> yes contained in 170º...-170º

range.contains(self)
}

/// Checks whether the current angle is contained within a given half-open range.
///
/// - Parameters:
///
/// - range: The half-open angular range within which containment is checked.
func contained(in range: Range<Angle<T>>) -> Bool {
range.contains(self)
}
}

extension Angle: Comparable {
public static func < (lhs: Angle<T>, rhs: Angle<T>) -> Bool {
guard lhs != rhs else {
return false
}
return lhs.radians < rhs.radians
}
}

private func normalize<T>(_ input: T, limit: T) -> T
where T: Real {
var normalized = input

while normalized > limit {
normalized -= 2 * limit
}

while normalized < -limit {
normalized += 2 * limit
}

return normalized
}
176 changes: 176 additions & 0 deletions Tests/RealTests/AngleTests.swift
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
//===--- AngleTests.swift -------------------------------------*- swift -*-===//
//
// This source file is part of the Swift Numerics open source project
//
// Copyright (c) 2020 Apple Inc. and the Swift Numerics project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

import RealModule
import XCTest
import _TestSupport

internal extension Real
where Self: BinaryFloatingPoint {
static func conversionBetweenRadiansAndDegreesChecks() {
let angleFromRadians = Angle<Self>(radians: Self.pi / 3)
assertClose(60, angleFromRadians.degrees)

let angleFromDegrees = Angle<Self>(degrees: 120)
// the compiler complains with the following line
// assertClose(2 * Self.pi / 3, angleFromDegrees.radians)
assertClose(2 * Double(Self.pi) / 3, angleFromDegrees.radians)
}

static func trigonometricFunctionChecks() {
assertClose(1.1863995522992575361931268186727044683, Angle<Self>.acos(0.375).radians)
assertClose(0.3843967744956390830381948729670469737, Angle<Self>.asin(0.375).radians)
assertClose(0.3587706702705722203959200639264604997, Angle<Self>.atan(0.375).radians)
assertClose(0.54041950027058415544357836460859991, Angle<Self>.atan2(y: 0.375, x: 0.625).radians)

assertClose(0.9305076219123142911494767922295555080, cos(Angle<Self>(radians: 0.375)))
assertClose(0.3662725290860475613729093517162641571, sin(Angle<Self>(radians: 0.375)))
assertClose(0.3936265759256327582294137871012180981, tan(Angle<Self>(radians: 0.375)))
}

static func specialDegreesTrigonometricFunctionChecks() {
XCTAssertEqual(1, cos(Angle<Self>(degrees: -360)))
XCTAssertEqual(0, cos(Angle<Self>(degrees: -270)))
XCTAssertEqual(-1, cos(Angle<Self>(degrees: -180)))
assertClose(-0.86602540378443864676372317075293618347, cos(Angle<Self>(degrees: -150)))
assertClose(-0.70710678118654752440084436210484903929, cos(Angle<Self>(degrees: -135)))
assertClose(-0.5, cos(Angle<Self>(degrees: -120)))
XCTAssertEqual(0, cos(Angle<Self>(degrees: -90)))
assertClose(0.5, cos(Angle<Self>(degrees: -60)))
assertClose(0.70710678118654752440084436210484903929, cos(Angle<Self>(degrees: -45)))
assertClose(0.86602540378443864676372317075293618347, cos(Angle<Self>(degrees: -30)))
XCTAssertEqual(1, cos(Angle<Self>(degrees: 0)))
assertClose(0.86602540378443864676372317075293618347, cos(Angle<Self>(degrees: 30)))
assertClose(0.70710678118654752440084436210484903929, cos(Angle<Self>(degrees: 45)))
assertClose(0.5, cos(Angle<Self>(degrees: 60)))
XCTAssertEqual(0, cos(Angle<Self>(degrees: 90)))
assertClose(-0.5, cos(Angle<Self>(degrees: 120)))
assertClose(-0.70710678118654752440084436210484903929, cos(Angle<Self>(degrees: 135)))
assertClose(-0.86602540378443864676372317075293618347, cos(Angle<Self>(degrees: 150)))
XCTAssertEqual(-1, cos(Angle<Self>(degrees: 180)))
XCTAssertEqual(0, cos(Angle<Self>(degrees: 270)))
XCTAssertEqual(1, cos(Angle<Self>(degrees: 360)))

XCTAssertEqual(0, sin(Angle<Self>(degrees: -360)))
XCTAssertEqual(1, sin(Angle<Self>(degrees: -270)))
XCTAssertEqual(0, sin(Angle<Self>(degrees: -180)))
assertClose(-0.5, sin(Angle<Self>(degrees: -150)))
assertClose(-0.70710678118654752440084436210484903929, sin(Angle<Self>(degrees: -135)))
assertClose(-0.86602540378443864676372317075293618347, sin(Angle<Self>(degrees: -120)))
XCTAssertEqual(-1, sin(Angle<Self>(degrees: -90)))
assertClose(-0.86602540378443864676372317075293618347, sin(Angle<Self>(degrees: -60)))
assertClose(-0.70710678118654752440084436210484903929, sin(Angle<Self>(degrees: -45)))
assertClose(-0.5, sin(Angle<Self>(degrees: -30)))
XCTAssertEqual(0, sin(Angle<Self>(degrees: 0)))
assertClose(0.5, sin(Angle<Self>(degrees: 30)))
assertClose(0.70710678118654752440084436210484903929, sin(Angle<Self>(degrees: 45)))
assertClose(0.86602540378443864676372317075293618347, sin(Angle<Self>(degrees: 60)))
XCTAssertEqual(1, sin(Angle<Self>(degrees: 90)))
assertClose(0.86602540378443864676372317075293618347, sin(Angle<Self>(degrees: 120)))
assertClose(0.70710678118654752440084436210484903929, sin(Angle<Self>(degrees: 135)))
assertClose(0.5, sin(Angle<Self>(degrees: 150)))
XCTAssertEqual(0, sin(Angle<Self>(degrees: 180)))
XCTAssertEqual(-1, sin(Angle<Self>(degrees: 270)))
XCTAssertEqual(0, sin(Angle<Self>(degrees: 360)))

XCTAssertEqual(0, tan(Angle<Self>(degrees: -360)))
XCTAssertEqual(.infinity, tan(Angle<Self>(degrees: -270)))
XCTAssertEqual(0, tan(Angle<Self>(degrees: -180)))
assertClose(0.57735026918962576450914878050195745565, tan(Angle<Self>(degrees: -150)))
XCTAssertEqual(1, tan(Angle<Self>(degrees: -135)))
assertClose(1.7320508075688772935274463415058723669, tan(Angle<Self>(degrees: -120)))
XCTAssertEqual(-.infinity, tan(Angle<Self>(degrees: -90)))
assertClose(-1.7320508075688772935274463415058723669, tan(Angle<Self>(degrees: -60)))
XCTAssertEqual(-1, tan(Angle<Self>(degrees: -45)))
assertClose(-0.57735026918962576450914878050195745565, tan(Angle<Self>(degrees: -30)))
XCTAssertEqual(0, tan(Angle<Self>(degrees: 0)))
assertClose(0.57735026918962576450914878050195745565, tan(Angle<Self>(degrees: 30)))
XCTAssertEqual(1, tan(Angle<Self>(degrees: 45)))
assertClose(1.7320508075688772935274463415058723669, tan(Angle<Self>(degrees: 60)))
XCTAssertEqual(.infinity, tan(Angle<Self>(degrees: 90)))
assertClose(-1.7320508075688772935274463415058723669, tan(Angle<Self>(degrees: 120)))
XCTAssertEqual(-1, tan(Angle<Self>(degrees: 135)))
assertClose(-0.57735026918962576450914878050195745565, tan(Angle<Self>(degrees: 150)))
XCTAssertEqual(0, tan(Angle<Self>(degrees: 180)))
XCTAssertEqual(-.infinity, tan(Angle<Self>(degrees: 270)))
XCTAssertEqual(0, tan(Angle<Self>(degrees: 360)))
}

static func additiveArithmeticTests() {
var angle = Angle(degrees: 30)
assertClose(50, (angle + Angle(degrees: 20)).degrees)
assertClose(10, (angle - Angle(degrees: 20)).degrees)
XCTAssertEqual(Angle(degrees: 60), angle * 2)
XCTAssertEqual(Angle(degrees: 60), 2 * angle)
XCTAssertEqual(Angle(degrees: 15), angle / 2)
angle += Angle(degrees: 10)
XCTAssertEqual(Angle(degrees: 40), angle)
angle -= Angle(degrees: 20)
XCTAssertEqual(Angle(degrees: 20), angle)
angle *= 3
XCTAssertEqual(Angle(degrees: 60), angle)
angle /= 6
XCTAssertEqual(Angle(degrees: 10), angle)
}

static func rangeContainmentTests() {
let angle = Angle(degrees: 30)
XCTAssertTrue(angle.contained(in: Angle(degrees: 10)...Angle(degrees: 40)))
XCTAssertTrue(angle.contained(in: Angle(degrees: 10)...Angle(degrees: 30)))
XCTAssertTrue(angle.contained(in: Angle(degrees: 30)...Angle(degrees: 40)))
XCTAssertFalse(angle.contained(in: Angle(degrees: 10)...Angle(degrees: 20)))
XCTAssertFalse(angle.contained(in: Angle(degrees: 50)...Angle(degrees: 60)))
XCTAssertTrue(angle.contained(in: Angle(degrees: 30)..<Angle(degrees: 40)))
XCTAssertFalse(angle.contained(in: Angle(degrees: 10)..<Angle(degrees: 30)))
XCTAssertTrue(angle.contained(in: Angle(degrees: 10)..<Angle(degrees: 40)))
}
}

final class AngleTests: XCTestCase {
#if swift(>=5.3) && !(os(macOS) || os(iOS) && targetEnvironment(macCatalyst))
func testFloat16() {
if #available(iOS 14.0, watchOS 14.0, tvOS 7.0, *) {
Float16.conversionBetweenRadiansAndDegreesChecks()
Float16.trigonometricFunctionChecks()
Float16.specialDegreesTrigonometricFunctionChecks()
Float16.additiveArithmeticTests()
Float16.rangeContainmentTests()
}
}
#endif

func testFloat() {
Float.conversionBetweenRadiansAndDegreesChecks()
Float.trigonometricFunctionChecks()
Float.specialDegreesTrigonometricFunctionChecks()
Float.additiveArithmeticTests()
Float.rangeContainmentTests()
}

func testDouble() {
Double.conversionBetweenRadiansAndDegreesChecks()
Double.trigonometricFunctionChecks()
Double.specialDegreesTrigonometricFunctionChecks()
Double.additiveArithmeticTests()
Double.rangeContainmentTests()
}

#if (arch(i386) || arch(x86_64)) && !os(Windows) && !os(Android)
func testFloat80() {
Float80.conversionBetweenRadiansAndDegreesChecks()
Float80.trigonometricFunctionChecks()
Float80.specialDegreesTrigonometricFunctionChecks()
Float80.additiveArithmeticTests()
Float80.rangeContainmentTests()
}
#endif
}
Loading