-
Notifications
You must be signed in to change notification settings - Fork 157
Introducing Angle type [Issue #88] #169
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from 14 commits
b313290
c924790
437b280
bb19809
d4a4c3c
f676bc1
bb474f5
2fad678
4844b2a
c5828b8
2fba7c7
79f5f7a
5f57416
e09ef7a
131774a
949c9a2
63bdaaf
acd67fb
14c520b
9e7fb84
1743914
56c5ffc
83ba41b
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
//===--- Angle.swift ------------------------------------------*- swift -*-===// | ||
// | ||
// This source file is part of the Swift Numerics open source project | ||
// | ||
// Copyright (c) 2020 Apple Inc. and the Swift Numerics project authors | ||
// Licensed under Apache License v2.0 with Runtime Library Exception | ||
// | ||
// See https://swift.org/LICENSE.txt for license information | ||
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors | ||
// | ||
//===----------------------------------------------------------------------===// | ||
|
||
/// A wrapper type for angle operations and functions | ||
/// | ||
/// All trigonometric functions expect the argument to be passed as radians (Real), but this is not enforced by the type system. | ||
/// This type serves exactly this purpose, and can be seen as an alternative to the underlying Real implementation. | ||
public struct Angle<T: Real>: Equatable { | ||
public var radians: T | ||
public init(radians: T) { self.radians = radians } | ||
public static func radians(_ val: T) -> Angle<T> { .init(radians: val) } | ||
|
||
public var degrees: T { radians * 180 / .pi } | ||
public init(degrees: T) { | ||
let normalized = normalize(degrees, limit: 180) | ||
self.init(radians: normalized * .pi / 180) | ||
} | ||
public static func degrees(_ val: T) -> Angle<T> { .init(degrees: val) } | ||
} | ||
|
||
public extension ElementaryFunctions | ||
where Self: Real { | ||
/// See also: | ||
/// - | ||
/// `ElementaryFunctions.cos()` | ||
static func cos(_ angle: Angle<Self>) -> Self { | ||
let normalizedRadians = normalize(angle.radians, limit: .pi) | ||
|
||
if -.pi/4 < normalizedRadians && normalizedRadians < .pi/4 { | ||
return Self.cos(normalizedRadians) | ||
} | ||
|
||
if normalizedRadians > 3 * .pi / 4 || normalizedRadians < -3 * .pi / 4 { | ||
return -Self.cos(.pi - normalizedRadians) | ||
} | ||
|
||
if normalizedRadians >= 0 { | ||
return Self.sin(.pi/2 - normalizedRadians) | ||
} | ||
|
||
return Self.sin(normalizedRadians + .pi / 2) | ||
} | ||
|
||
/// See also: | ||
/// - | ||
/// `ElementaryFunctions.sin()` | ||
static func sin(_ angle: Angle<Self>) -> Self { | ||
let normalizedRadians = normalize(angle.radians, limit: .pi) | ||
|
||
if .pi / 4 < normalizedRadians && normalizedRadians < 3 * .pi / 4 { | ||
return Self.sin(normalizedRadians) | ||
} | ||
|
||
if -3 * .pi / 4 < normalizedRadians && normalizedRadians < -.pi / 4 { | ||
return -Self.sin(-normalizedRadians) | ||
} | ||
|
||
if normalizedRadians > 3 * .pi / 4 { | ||
return Self.sin(.pi - normalizedRadians) | ||
} | ||
|
||
if normalizedRadians < -3 * .pi / 4 { | ||
return -Self.sin(.pi + normalizedRadians) | ||
} | ||
|
||
return Self.sin(normalizedRadians) | ||
} | ||
|
||
/// See also: | ||
/// - | ||
/// `ElementaryFunctions.tan()` | ||
static func tan(_ angle: Angle<Self>) -> Self { | ||
let sine = sin(angle) | ||
let cosine = cos(angle) | ||
|
||
guard cosine != 0 else { | ||
var result = Self.infinity | ||
if sine.sign == .minus { | ||
result.negate() | ||
} | ||
return result | ||
} | ||
|
||
return sine / cosine | ||
} | ||
} | ||
|
||
public extension Angle { | ||
/// See also: | ||
/// - | ||
/// `ElementaryFunctions.acos()` | ||
static func acos(_ x: T) -> Self { Angle.radians(T.acos(x)) } | ||
|
||
/// See also: | ||
/// - | ||
/// `ElementaryFunctions.asin()` | ||
static func asin(_ x: T) -> Self { Angle.radians(T.asin(x)) } | ||
|
||
/// See also: | ||
/// - | ||
/// `ElementaryFunctions.atan()` | ||
static func atan(_ x: T) -> Self { Angle.radians(T.atan(x)) } | ||
|
||
/// See also: | ||
/// - | ||
/// `RealFunctions.atan2()` | ||
static func atan2(y: T, x: T) -> Self { Angle.radians(T.atan2(y: y, x: x)) } | ||
} | ||
|
||
extension Angle: AdditiveArithmetic { | ||
public static var zero: Angle<T> { .radians(0) } | ||
|
||
public static func + (lhs: Angle<T>, rhs: Angle<T>) -> Angle<T> { | ||
Angle(radians: lhs.radians + rhs.radians) | ||
} | ||
|
||
public static func += (lhs: inout Angle<T>, rhs: Angle<T>) { | ||
lhs.radians += rhs.radians | ||
} | ||
|
||
public static func - (lhs: Angle<T>, rhs: Angle<T>) -> Angle<T> { | ||
Angle(radians: lhs.radians - rhs.radians) | ||
} | ||
|
||
public static func -= (lhs: inout Angle<T>, rhs: Angle<T>) { | ||
lhs.radians -= rhs.radians | ||
} | ||
} | ||
|
||
public extension Angle { | ||
static func * (lhs: Angle<T>, rhs: T) -> Angle<T> { | ||
Angle(radians: lhs.radians * rhs) | ||
} | ||
|
||
static func *= (lhs: inout Angle<T>, rhs: T) { | ||
lhs.radians *= rhs | ||
} | ||
|
||
static func * (lhs: T, rhs: Angle<T>) -> Angle<T> { | ||
Angle(radians: rhs.radians * lhs) | ||
} | ||
|
||
static func / (lhs: Angle<T>, rhs: T) -> Angle<T> { | ||
assert(rhs != 0) | ||
return Angle(radians: lhs.radians / rhs) | ||
} | ||
|
||
static func /= (lhs: inout Angle<T>, rhs: T) { | ||
assert(rhs != 0) | ||
lhs.radians /= rhs | ||
} | ||
} | ||
|
||
public extension Angle { | ||
/// Checks whether the current angle is contained within a given closed range. | ||
/// | ||
/// - Parameters: | ||
/// | ||
/// - range: The closed angular range within which containment is checked. | ||
func contained(in range: ClosedRange<Angle<T>>) -> Bool { | ||
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. What is the value of these APIs over what's written in the body? I would suggest not including these separately; the existing forms are canonical and straightforward enough to write. What @NevinBR is getting at, I think, is that 361 degrees is contained "between" 0 degrees and 2 degrees. This does not offer that functionality, and convenient access to it would be useful. It would need to be distinguished from the functionality here, though, through some thoughtful naming. For API naming purposes, incidentally, the function would need to be named There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Additionally, 175º and -175º are both “between” 170º and -170º (but they are not between -170º and 170º). There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. So, essentially you mean @NevinBR that the containment should be performed on the normalized angular range, right? 361º -> normalized to 1º -> contained in -10º...10º There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I’m not entirely sure how normalization should come into play. Probably yes normalized angles should be used for comparison / containment, and if someone wants to work with the unnormalized value they can extract it and do so manually. However, several of your examples do not behave as I would expect:
These should be:
|
||
range.contains(self) | ||
} | ||
|
||
/// Checks whether the current angle is contained within a given half-open range. | ||
/// | ||
/// - Parameters: | ||
/// | ||
/// - range: The half-open angular range within which containment is checked. | ||
func contained(in range: Range<Angle<T>>) -> Bool { | ||
range.contains(self) | ||
} | ||
} | ||
|
||
extension Angle: Comparable { | ||
public static func < (lhs: Angle<T>, rhs: Angle<T>) -> Bool { | ||
guard lhs != rhs else { | ||
return false | ||
} | ||
return lhs.radians < rhs.radians | ||
} | ||
} | ||
|
||
private func normalize<T>(_ input: T, limit: T) -> T | ||
where T: Real { | ||
var normalized = input | ||
|
||
while normalized > limit { | ||
normalized -= 2 * limit | ||
} | ||
|
||
while normalized < -limit { | ||
normalized += 2 * limit | ||
} | ||
|
||
return normalized | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
//===--- AngleTests.swift -------------------------------------*- swift -*-===// | ||
// | ||
// This source file is part of the Swift Numerics open source project | ||
// | ||
// Copyright (c) 2020 Apple Inc. and the Swift Numerics project authors | ||
// Licensed under Apache License v2.0 with Runtime Library Exception | ||
// | ||
// See https://swift.org/LICENSE.txt for license information | ||
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors | ||
// | ||
//===----------------------------------------------------------------------===// | ||
|
||
import RealModule | ||
import XCTest | ||
import _TestSupport | ||
|
||
internal extension Real | ||
where Self: BinaryFloatingPoint { | ||
static func conversionBetweenRadiansAndDegreesChecks() { | ||
let angleFromRadians = Angle<Self>(radians: Self.pi / 3) | ||
assertClose(60, angleFromRadians.degrees) | ||
|
||
let angleFromDegrees = Angle<Self>(degrees: 120) | ||
// the compiler complains with the following line | ||
// assertClose(2 * Self.pi / 3, angleFromDegrees.radians) | ||
assertClose(2 * Double(Self.pi) / 3, angleFromDegrees.radians) | ||
} | ||
|
||
static func trigonometricFunctionChecks() { | ||
assertClose(1.1863995522992575361931268186727044683, Angle<Self>.acos(0.375).radians) | ||
assertClose(0.3843967744956390830381948729670469737, Angle<Self>.asin(0.375).radians) | ||
assertClose(0.3587706702705722203959200639264604997, Angle<Self>.atan(0.375).radians) | ||
assertClose(0.54041950027058415544357836460859991, Angle<Self>.atan2(y: 0.375, x: 0.625).radians) | ||
|
||
assertClose(0.9305076219123142911494767922295555080, cos(Angle<Self>(radians: 0.375))) | ||
assertClose(0.3662725290860475613729093517162641571, sin(Angle<Self>(radians: 0.375))) | ||
assertClose(0.3936265759256327582294137871012180981, tan(Angle<Self>(radians: 0.375))) | ||
} | ||
|
||
static func specialDegreesTrigonometricFunctionChecks() { | ||
XCTAssertEqual(1, cos(Angle<Self>(degrees: -360))) | ||
XCTAssertEqual(0, cos(Angle<Self>(degrees: -270))) | ||
XCTAssertEqual(-1, cos(Angle<Self>(degrees: -180))) | ||
assertClose(-0.86602540378443864676372317075293618347, cos(Angle<Self>(degrees: -150))) | ||
assertClose(-0.70710678118654752440084436210484903929, cos(Angle<Self>(degrees: -135))) | ||
assertClose(-0.5, cos(Angle<Self>(degrees: -120))) | ||
XCTAssertEqual(0, cos(Angle<Self>(degrees: -90))) | ||
assertClose(0.5, cos(Angle<Self>(degrees: -60))) | ||
assertClose(0.70710678118654752440084436210484903929, cos(Angle<Self>(degrees: -45))) | ||
assertClose(0.86602540378443864676372317075293618347, cos(Angle<Self>(degrees: -30))) | ||
XCTAssertEqual(1, cos(Angle<Self>(degrees: 0))) | ||
assertClose(0.86602540378443864676372317075293618347, cos(Angle<Self>(degrees: 30))) | ||
assertClose(0.70710678118654752440084436210484903929, cos(Angle<Self>(degrees: 45))) | ||
assertClose(0.5, cos(Angle<Self>(degrees: 60))) | ||
XCTAssertEqual(0, cos(Angle<Self>(degrees: 90))) | ||
assertClose(-0.5, cos(Angle<Self>(degrees: 120))) | ||
assertClose(-0.70710678118654752440084436210484903929, cos(Angle<Self>(degrees: 135))) | ||
assertClose(-0.86602540378443864676372317075293618347, cos(Angle<Self>(degrees: 150))) | ||
XCTAssertEqual(-1, cos(Angle<Self>(degrees: 180))) | ||
XCTAssertEqual(0, cos(Angle<Self>(degrees: 270))) | ||
XCTAssertEqual(1, cos(Angle<Self>(degrees: 360))) | ||
|
||
XCTAssertEqual(0, sin(Angle<Self>(degrees: -360))) | ||
XCTAssertEqual(1, sin(Angle<Self>(degrees: -270))) | ||
XCTAssertEqual(0, sin(Angle<Self>(degrees: -180))) | ||
assertClose(-0.5, sin(Angle<Self>(degrees: -150))) | ||
assertClose(-0.70710678118654752440084436210484903929, sin(Angle<Self>(degrees: -135))) | ||
assertClose(-0.86602540378443864676372317075293618347, sin(Angle<Self>(degrees: -120))) | ||
XCTAssertEqual(-1, sin(Angle<Self>(degrees: -90))) | ||
assertClose(-0.86602540378443864676372317075293618347, sin(Angle<Self>(degrees: -60))) | ||
assertClose(-0.70710678118654752440084436210484903929, sin(Angle<Self>(degrees: -45))) | ||
assertClose(-0.5, sin(Angle<Self>(degrees: -30))) | ||
XCTAssertEqual(0, sin(Angle<Self>(degrees: 0))) | ||
assertClose(0.5, sin(Angle<Self>(degrees: 30))) | ||
assertClose(0.70710678118654752440084436210484903929, sin(Angle<Self>(degrees: 45))) | ||
assertClose(0.86602540378443864676372317075293618347, sin(Angle<Self>(degrees: 60))) | ||
XCTAssertEqual(1, sin(Angle<Self>(degrees: 90))) | ||
assertClose(0.86602540378443864676372317075293618347, sin(Angle<Self>(degrees: 120))) | ||
assertClose(0.70710678118654752440084436210484903929, sin(Angle<Self>(degrees: 135))) | ||
assertClose(0.5, sin(Angle<Self>(degrees: 150))) | ||
XCTAssertEqual(0, sin(Angle<Self>(degrees: 180))) | ||
XCTAssertEqual(-1, sin(Angle<Self>(degrees: 270))) | ||
XCTAssertEqual(0, sin(Angle<Self>(degrees: 360))) | ||
|
||
XCTAssertEqual(0, tan(Angle<Self>(degrees: -360))) | ||
XCTAssertEqual(.infinity, tan(Angle<Self>(degrees: -270))) | ||
XCTAssertEqual(0, tan(Angle<Self>(degrees: -180))) | ||
assertClose(0.57735026918962576450914878050195745565, tan(Angle<Self>(degrees: -150))) | ||
XCTAssertEqual(1, tan(Angle<Self>(degrees: -135))) | ||
assertClose(1.7320508075688772935274463415058723669, tan(Angle<Self>(degrees: -120))) | ||
XCTAssertEqual(-.infinity, tan(Angle<Self>(degrees: -90))) | ||
assertClose(-1.7320508075688772935274463415058723669, tan(Angle<Self>(degrees: -60))) | ||
XCTAssertEqual(-1, tan(Angle<Self>(degrees: -45))) | ||
assertClose(-0.57735026918962576450914878050195745565, tan(Angle<Self>(degrees: -30))) | ||
XCTAssertEqual(0, tan(Angle<Self>(degrees: 0))) | ||
assertClose(0.57735026918962576450914878050195745565, tan(Angle<Self>(degrees: 30))) | ||
XCTAssertEqual(1, tan(Angle<Self>(degrees: 45))) | ||
assertClose(1.7320508075688772935274463415058723669, tan(Angle<Self>(degrees: 60))) | ||
XCTAssertEqual(.infinity, tan(Angle<Self>(degrees: 90))) | ||
assertClose(-1.7320508075688772935274463415058723669, tan(Angle<Self>(degrees: 120))) | ||
XCTAssertEqual(-1, tan(Angle<Self>(degrees: 135))) | ||
assertClose(-0.57735026918962576450914878050195745565, tan(Angle<Self>(degrees: 150))) | ||
XCTAssertEqual(0, tan(Angle<Self>(degrees: 180))) | ||
XCTAssertEqual(-.infinity, tan(Angle<Self>(degrees: 270))) | ||
XCTAssertEqual(0, tan(Angle<Self>(degrees: 360))) | ||
} | ||
|
||
static func additiveArithmeticTests() { | ||
var angle = Angle(degrees: 30) | ||
assertClose(50, (angle + Angle(degrees: 20)).degrees) | ||
assertClose(10, (angle - Angle(degrees: 20)).degrees) | ||
XCTAssertEqual(Angle(degrees: 60), angle * 2) | ||
XCTAssertEqual(Angle(degrees: 60), 2 * angle) | ||
XCTAssertEqual(Angle(degrees: 15), angle / 2) | ||
angle += Angle(degrees: 10) | ||
XCTAssertEqual(Angle(degrees: 40), angle) | ||
angle -= Angle(degrees: 20) | ||
XCTAssertEqual(Angle(degrees: 20), angle) | ||
angle *= 3 | ||
XCTAssertEqual(Angle(degrees: 60), angle) | ||
angle /= 6 | ||
XCTAssertEqual(Angle(degrees: 10), angle) | ||
} | ||
|
||
static func rangeContainmentTests() { | ||
let angle = Angle(degrees: 30) | ||
XCTAssertTrue(angle.contained(in: Angle(degrees: 10)...Angle(degrees: 40))) | ||
XCTAssertTrue(angle.contained(in: Angle(degrees: 10)...Angle(degrees: 30))) | ||
XCTAssertTrue(angle.contained(in: Angle(degrees: 30)...Angle(degrees: 40))) | ||
XCTAssertFalse(angle.contained(in: Angle(degrees: 10)...Angle(degrees: 20))) | ||
XCTAssertFalse(angle.contained(in: Angle(degrees: 50)...Angle(degrees: 60))) | ||
XCTAssertTrue(angle.contained(in: Angle(degrees: 30)..<Angle(degrees: 40))) | ||
XCTAssertFalse(angle.contained(in: Angle(degrees: 10)..<Angle(degrees: 30))) | ||
XCTAssertTrue(angle.contained(in: Angle(degrees: 10)..<Angle(degrees: 40))) | ||
} | ||
} | ||
|
||
final class AngleTests: XCTestCase { | ||
#if swift(>=5.3) && !(os(macOS) || os(iOS) && targetEnvironment(macCatalyst)) | ||
func testFloat16() { | ||
if #available(iOS 14.0, watchOS 14.0, tvOS 7.0, *) { | ||
Float16.conversionBetweenRadiansAndDegreesChecks() | ||
Float16.trigonometricFunctionChecks() | ||
Float16.specialDegreesTrigonometricFunctionChecks() | ||
Float16.additiveArithmeticTests() | ||
Float16.rangeContainmentTests() | ||
} | ||
} | ||
#endif | ||
|
||
func testFloat() { | ||
Float.conversionBetweenRadiansAndDegreesChecks() | ||
Float.trigonometricFunctionChecks() | ||
Float.specialDegreesTrigonometricFunctionChecks() | ||
Float.additiveArithmeticTests() | ||
Float.rangeContainmentTests() | ||
} | ||
|
||
func testDouble() { | ||
Double.conversionBetweenRadiansAndDegreesChecks() | ||
Double.trigonometricFunctionChecks() | ||
Double.specialDegreesTrigonometricFunctionChecks() | ||
Double.additiveArithmeticTests() | ||
Double.rangeContainmentTests() | ||
} | ||
|
||
#if (arch(i386) || arch(x86_64)) && !os(Windows) && !os(Android) | ||
func testFloat80() { | ||
Float80.conversionBetweenRadiansAndDegreesChecks() | ||
Float80.trigonometricFunctionChecks() | ||
Float80.specialDegreesTrigonometricFunctionChecks() | ||
Float80.additiveArithmeticTests() | ||
Float80.rangeContainmentTests() | ||
} | ||
#endif | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This seems unfortunate to me that adding two angles specified in degrees incurs rounding error seven times if I want the result in degrees. I think this dedicated type needs to store values given in degrees as-is if it offers such arithmetic.
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is what I intended with my earlier comment, so degrees and radians are stored separately.
#169 (comment)
We could then switch on all operations performed on the
input
and essentially handle three cases:I'm not sure whether people agree on that
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
👍 That would yield a superior result in the case of operations performed entirely in degrees or radians.
I wonder if there are alternative designs that can improve the result when working with both degrees and radians. If the type stored both
radians
anddegrees
, for example, then you could store the result of "90 degrees plus 1 radian" exactly. I haven't thought through the remainder of the design, but I offer it for your consideration here.