Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
322 changes: 322 additions & 0 deletions site/content/ecosystem/arangodb-mcp-server.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,322 @@
---
title: ArangoDB Model Context Protocol (MCP) Server
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@diegomendez40 should we mark it as experimental?

menuTitle: MCP Server
weight: 10
description: >-
A Model Context Protocol server for generating and executing AQL queries using AI assistants like Claude and Cursor IDE
---
The ArangoDB MCP Server is a focused [Model Context Protocol](https://modelcontextprotocol.io/) (MCP) implementation that enables AI assistants to generate and execute AQL queries based on natural language questions. It includes lightweight schema discovery and manuals to ground queries in actual database structure.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
The ArangoDB MCP Server is a focused [Model Context Protocol](https://modelcontextprotocol.io/) (MCP) implementation that enables AI assistants to generate and execute AQL queries based on natural language questions. It includes lightweight schema discovery and manuals to ground queries in actual database structure.
The ArangoDB MCP Server is a focused [Model Context Protocol (MCP)](https://modelcontextprotocol.io/)
implementation that enables AI assistants to generate and execute AQL queries
based on natural language questions. It includes lightweight schema discovery
and manuals to ground queries in actual database structure.


## Features

**AQL Generation & Execution:**
- Generate AQL grounded in actual database structure
- Execute AQL with optional bind variables and target database

**Manuals for Guidance:**
- AQL reference and optimization guides built-in
- Context-aware query generation

**Lightweight Schema Discovery:**
- List collections within accessible databases
- Sample documents via simple filters to learn fields

## What You Can Do

The server is purpose-built for safe, read-focused AQL operations:
- Execute AQL queries with optional bind variables and target database
- Access built-in manuals for syntax and optimization guidance
- Discover database schemas and collection structures
- Sample documents to understand field structures

The following are not included:
- Graph/view/index/analyzer management tools
- Destructive admin operations (create/delete databases or collections)

## Getting Started

Choose the setup that works best for you. Docker is recommended for quick start with everything bundled together.

### Option 1: Docker Setup (Recommended)

This approach bundles the MCP server and ArangoDB together, perfect for testing and development.

**Prerequisites:**
- Docker installed
- Cursor IDE or Claude Desktop

1. Build the MCP server image:

```bash
cd mcp-arango-aql
docker build -t arangodb-mcp-server:dev -f Dockerfile.dev .
```

2. Start ArangoDB (if you don't have an instance):

```bash
docker run -d --name arangodb -p 8529:8529 -e ARANGO_ROOT_PASSWORD=test arangodb/arangodb:latest
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should use image arangodb or arangodb/enterprise. We no longer publish arangodb/arangodb (CE) since 3.12.5

```

3. Configure your AI client:

{{< tabs "docker-setup" >}}

{{< tab "Cursor IDE" >}}
Go to Settings > Features > Tools > New MCP Server and add the following configuration.

```json
{
"mcpServers": {
"arangodb-mcp": {
"command": "docker",
"args": [
"run", "-i", "--rm", "--network", "host",
"-e", "ARANGO_HOSTS=http://localhost:8529",
"-e", "ARANGO_ROOT_USERNAME=root",
"-e", "ARANGO_ROOT_PASSWORD=test",
"-e", "ARANGO_DEFAULT_DB_NAME=_system",
"arangodb-mcp-server:dev"
]
}
}
}
```
{{< /tab >}}

{{< tab "Claude Desktop" >}}
Add the following configuration to `claude_desktop_config.json`.

```json
{
"mcpServers": {
"arangodb-mcp": {
"command": "docker",
"args": [
"run", "-i", "--rm", "--network", "host",
"-e", "ARANGO_HOSTS=http://localhost:8529",
"-e", "ARANGO_ROOT_USERNAME=root",
"-e", "ARANGO_ROOT_PASSWORD=test",
"-e", "ARANGO_DEFAULT_DB_NAME=_system",
"arangodb-mcp-server:dev"
]
}
}
}
```
{{< /tab >}}

{{< /tabs >}}

4. Restart your AI client to load the new server.

5. Test the connection by asking your AI assistant:
- "Show me all collections in the database"
- "Fetch the database schemas"

### Option 2: Poetry Setup (Local Development)

Use this approach if you want to run the server locally or contribute to development.

**Prerequisites:**
- Python 3.10 or higher
- [Poetry](https://python-poetry.org/docs/#installation) installed
- ArangoDB instance (local or remote)

1. Install dependencies:

```bash
cd arango-mcp-server
poetry install
```

2. Configure your AI client:

{{< tabs "poetry-setup" >}}

{{< tab "Cursor IDE" >}}
Add to MCP settings:

```json
{
"mcpServers": {
"arangodb-mcp": {
"command": "poetry",
"args": ["-C", "/path/to/arango-mcp-server", "run", "python", "-m", "main"],
"env": {
"ARANGO_HOSTS": "http://localhost:8529",
"ARANGO_ROOT_USERNAME": "root",
"ARANGO_ROOT_PASSWORD": "your_password_here",
"ARANGO_DEFAULT_DB_NAME": "your_db_name"
}
}
}
}
```

{{< warning >}}
Replace `/path/to/arango-mcp-server` with the actual path to your project directory. The `-C` flag specifies the working directory for Poetry.
{{< /warning >}}
{{< /tab >}}

{{< tab "Claude Desktop" >}}
Add to `claude_desktop_config.json`:

```json
{
"mcpServers": {
"arangodb-mcp": {
"command": "poetry",
"args": ["-C", "/path/to/arango-mcp-server", "run", "python", "-m", "main"],
"env": {
"ARANGO_HOSTS": "http://localhost:8529",
"ARANGO_ROOT_USERNAME": "root",
"ARANGO_ROOT_PASSWORD": "your_password_here",
"ARANGO_DEFAULT_DB_NAME": "your_db_name"
}
}
}
}
```

{{< warning >}}
Replace `/path/to/arango-mcp-server` with the actual path to your project directory. The `-C` flag specifies the working directory for Poetry.
{{< /warning >}}
{{< /tab >}}

{{< /tabs >}}

### Environment Variables Reference

| Variable | Required | Description |
|----------|----------|-------------|
| `ARANGO_HOSTS` | Yes | ArangoDB server URL (e.g., `http://localhost:8529`) |
| `ARANGO_ROOT_USERNAME` | Yes | Database username |
| `ARANGO_ROOT_PASSWORD` | Yes | Database password |
| `ARANGO_DEFAULT_DB_NAME` | Yes | Default database name to use |

## Available Tools

The MCP server exposes four main tools that AI assistants can use to interact with your ArangoDB database.

### `get-aql-manual`

Retrieves built-in documentation for AQL syntax and optimization.

**Parameters:**
- `manual_name` (required): Either `aql_ref` or `optimization`.

**Use when:** You need reference documentation for writing AQL queries.

### `fetch-schemas`

Lists all collections in a database (non-system collections only).

**Parameters:**
- `database_name` (optional): Target database. Uses configured default if not specified.

**Use when:** You need to discover what collections exist in your database.

### `read-documents-with-filter`

Samples documents from a collection using simple equality filters.

**Parameters:**
- `collection_name` (required): Name of the collection to query.
- `filters` (required): Filter conditions as key-value pairs.
- `limit` (optional, default: 100): Maximum documents to return.
- `skip` (optional, default: 0): Number of documents to skip (pagination).

**Use when:** You want to explore document structure or find specific documents by exact field matches.

### `execute-aql-query`

Executes AQL queries with optional bind variables.

**Parameters:**
- `aql_query` (required): The AQL query to execute.
- `bind_vars` (optional): Bind variables for parameterized queries.
- `database_name` (optional): Target database.

**Use when:** You need to run complex queries, aggregations, or graph traversals.

## Workflow

When working with the MCP server, AI assistants typically follow this pattern:

1. **Discover**: Call `fetch-schemas()` to understand available collections.
2. **Explore**: Use `read-documents-with-filter()` to see document structures.
3. **Reference**: Call `get-aql-manual()` if complex query syntax is needed.
4. **Execute**: Run queries with `execute-aql-query()` using bind variables for safety.

## Practical Examples

**Example 1: Exploring Your Database**

*Prompt:* "Show me all collections in the database"

The AI will call `fetch-schemas()` and display the available collections with their types and document counts.

**Example 2: Finding Specific Records**

*Prompt:* "Find all active users who are verified"

The AI will:
1. Confirm the `users` collection exists with `fetch-schemas()`
2. Sample the structure with `read-documents-with-filter()`
3. Generate and execute an AQL query:
```aql
FOR user IN users
FILTER user.status == "active" AND user.verified == true
RETURN user
```

**Example 3: Complex Graph Traversal**

*Prompt:* "Find all friends of friends for user 'john' up to 3 levels deep"

The AI will:
1. Retrieve the AQL reference manual for graph traversal syntax
2. Identify edge collections using `fetch-schemas()`
3. Generate an optimized graph query:
```aql
FOR v, e, p IN 1..3 OUTBOUND 'users/john' friends
RETURN DISTINCT v
```
4. Execute with appropriate bind variables for safety

**Example 4: Data Analysis**

*Prompt:* "What's the average age of users by country?"

The AI will generate and execute an aggregation query:
```aql
FOR user IN users
COLLECT country = user.address.country
AGGREGATE avgAge = AVG(user.age)
RETURN { country, avgAge }
```

## Troubleshooting

**Server not appearing in AI client:**
- Restart your AI client after configuration changes
- Verify JSON syntax in your configuration file
- Check that all required environment variables are set

**Cannot connect to ArangoDB:**
- Verify ArangoDB is running: `curl http://localhost:8529/_api/version`
- Check credentials in environment variables are correct
- Ensure the specified database exists
- For Docker setups, verify containers can communicate on the network

**Docker container fails to start:**
- Check container logs: `docker logs <container-name>`
- Verify ArangoDB is running: `docker ps | grep arangodb`
- Ensure port 8529 is not in use: `lsof -i :8529`

**Queries return empty results:**
- Verify you're querying the correct database and collection
- Check the collection contains documents
- Use `read-documents-with-filter()` with minimal filters to see sample data