Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Jun 1, 2025

📄 71% (0.71x) speedup for retrieve_timesteps in src/diffusers/pipelines/ltx/pipeline_ltx.py

⏱️ Runtime : 842 microseconds 493 microseconds (best of 589 runs)

📝 Explanation and details

Key Optimizations:

  • Parameter Inspection Caching: The dominant bottleneck was repeated calls to inspect.signature(...).parameters.keys() for every function invocation. By caching the parameter set per scheduler class in _get_set_timesteps_param_set(cls), we reduce this to a one-time cost per scheduler class (for the process lifetime).
  • Minimal Imports: inspect is only imported if necessary in the helper.
  • Logic flow and memory remain identical, just far less repeated slow reflection.
  • Return value and all comments are preserved.

This greatly increases speed especially for repeated calls and in hot loops.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 22 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import inspect
from typing import List, Optional, Union

# imports
import pytest  # used for our unit tests
import torch
from src.diffusers.pipelines.ltx.pipeline_ltx import retrieve_timesteps

# ------------------------
# Mock Scheduler Classes
# ------------------------

class BasicScheduler:
    """
    Scheduler that supports set_timesteps(num_inference_steps, device)
    """
    def __init__(self):
        self.timesteps = None
        self.device = None
        self.set_timesteps_called_with = None

    def set_timesteps(self, num_inference_steps, device=None, **kwargs):
        self.device = device
        self.set_timesteps_called_with = num_inference_steps
        # For demonstration, create timesteps as a torch tensor from num_inference_steps-1 to 0
        self.timesteps = torch.arange(num_inference_steps-1, -1, -1, dtype=torch.long, device=device)

class TimestepsScheduler:
    """
    Scheduler that supports set_timesteps(timesteps, device)
    """
    def __init__(self):
        self.timesteps = None
        self.device = None
        self.set_timesteps_called_with = None

    def set_timesteps(self, timesteps, device=None, **kwargs):
        self.device = device
        self.set_timesteps_called_with = list(timesteps)
        # Store as torch tensor
        self.timesteps = torch.tensor(timesteps, dtype=torch.long, device=device)

class SigmasScheduler:
    """
    Scheduler that supports set_timesteps(sigmas, device)
    """
    def __init__(self):
        self.timesteps = None
        self.device = None
        self.set_timesteps_called_with = None

    def set_timesteps(self, sigmas, device=None, **kwargs):
        self.device = device
        self.set_timesteps_called_with = list(sigmas)
        # For this test, just store sigmas as float tensor (timesteps)
        self.timesteps = torch.tensor(sigmas, dtype=torch.float, device=device)

class FullScheduler:
    """
    Scheduler that supports set_timesteps(num_inference_steps, timesteps, sigmas, device)
    """
    def __init__(self):
        self.timesteps = None
        self.device = None
        self.set_timesteps_called_with = {}

    def set_timesteps(self, num_inference_steps=None, timesteps=None, sigmas=None, device=None, **kwargs):
        self.device = device
        self.set_timesteps_called_with = {
            "num_inference_steps": num_inference_steps,
            "timesteps": timesteps,
            "sigmas": sigmas,
        }
        if timesteps is not None:
            self.timesteps = torch.tensor(timesteps, dtype=torch.long, device=device)
        elif sigmas is not None:
            self.timesteps = torch.tensor(sigmas, dtype=torch.float, device=device)
        elif num_inference_steps is not None:
            self.timesteps = torch.arange(num_inference_steps-1, -1, -1, dtype=torch.long, device=device)
        else:
            self.timesteps = torch.tensor([], dtype=torch.long, device=device)

class NoCustomScheduler:
    """
    Scheduler that supports only num_inference_steps, not timesteps or sigmas
    """
    def __init__(self):
        self.timesteps = None
        self.device = None

    def set_timesteps(self, num_inference_steps, device=None, **kwargs):
        self.device = device
        self.timesteps = torch.arange(num_inference_steps-1, -1, -1, dtype=torch.long, device=device)

# ------------------------
# Unit Tests
# ------------------------

# 1. BASIC TEST CASES

def test_basic_num_inference_steps():
    # Test with num_inference_steps only (BasicScheduler)
    scheduler = BasicScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=5)

def test_basic_timesteps():
    # Test with custom timesteps (TimestepsScheduler)
    scheduler = TimestepsScheduler()
    custom_timesteps = [10, 20, 30]
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=custom_timesteps)

def test_basic_sigmas():
    # Test with custom sigmas (SigmasScheduler)
    scheduler = SigmasScheduler()
    custom_sigmas = [0.1, 0.2, 0.3]
    timesteps, steps = retrieve_timesteps(scheduler, sigmas=custom_sigmas)

def test_basic_device_str():
    # Test with device as string
    scheduler = BasicScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=3, device="cpu")

def test_basic_device_torch_device():
    # Test with device as torch.device
    scheduler = BasicScheduler()
    device = torch.device("cpu")
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=2, device=device)

def test_basic_full_scheduler_num_inference_steps():
    # Test FullScheduler with num_inference_steps
    scheduler = FullScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=4)

def test_basic_full_scheduler_timesteps():
    # Test FullScheduler with timesteps
    scheduler = FullScheduler()
    custom_timesteps = [1, 4, 9]
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=custom_timesteps)

def test_basic_full_scheduler_sigmas():
    # Test FullScheduler with sigmas
    scheduler = FullScheduler()
    custom_sigmas = [0.5, 1.5]
    timesteps, steps = retrieve_timesteps(scheduler, sigmas=custom_sigmas)

# 2. EDGE TEST CASES

def test_edge_timesteps_and_sigmas_both_given():
    # Passing both timesteps and sigmas should raise ValueError
    scheduler = FullScheduler()
    with pytest.raises(ValueError) as excinfo:
        retrieve_timesteps(scheduler, timesteps=[1,2], sigmas=[0.1,0.2])

def test_edge_timesteps_not_supported():
    # Passing timesteps to a scheduler that doesn't accept it should raise ValueError
    scheduler = BasicScheduler()
    with pytest.raises(ValueError) as excinfo:
        retrieve_timesteps(scheduler, timesteps=[1,2,3])

def test_edge_sigmas_not_supported():
    # Passing sigmas to a scheduler that doesn't accept it should raise ValueError
    scheduler = BasicScheduler()
    with pytest.raises(ValueError) as excinfo:
        retrieve_timesteps(scheduler, sigmas=[0.1,0.2])

def test_edge_timesteps_none_and_sigmas_none_and_num_inference_steps_none():
    # All three are None: should raise TypeError or fail in set_timesteps
    scheduler = BasicScheduler()
    with pytest.raises(TypeError):
        retrieve_timesteps(scheduler)

def test_edge_empty_timesteps():
    # Passing empty timesteps list should return empty tensor and 0 steps
    scheduler = TimestepsScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=[])

def test_edge_empty_sigmas():
    # Passing empty sigmas list should return empty tensor and 0 steps
    scheduler = SigmasScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, sigmas=[])

def test_edge_num_inference_steps_zero():
    # Passing num_inference_steps=0 should return empty tensor and 0 steps
    scheduler = BasicScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=0)

def test_edge_negative_num_inference_steps():
    # Negative num_inference_steps: should return empty tensor and negative steps
    scheduler = BasicScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=-5)

def test_edge_non_integer_timesteps():
    # Timesteps with floats should still work but be cast to long
    scheduler = TimestepsScheduler()
    custom_timesteps = [1.1, 2.9, 3.5]
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=custom_timesteps)

def test_edge_non_integer_sigmas():
    # Sigmas with ints should be cast to float
    scheduler = SigmasScheduler()
    custom_sigmas = [1, 2, 3]
    timesteps, steps = retrieve_timesteps(scheduler, sigmas=custom_sigmas)

def test_edge_kwargs_passed():
    # Ensure kwargs are passed to set_timesteps
    class KwargScheduler:
        def __init__(self):
            self.last_kwargs = None
            self.timesteps = None
        def set_timesteps(self, num_inference_steps, device=None, foo=None, **kwargs):
            self.last_kwargs = {"foo": foo, **kwargs}
            self.timesteps = torch.arange(num_inference_steps-1, -1, -1, dtype=torch.long, device=device)
    scheduler = KwargScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=3, foo="bar", extra=42)

def test_edge_scheduler_with_no_custom_support():
    # NoCustomScheduler: should work with num_inference_steps, but fail with timesteps or sigmas
    scheduler = NoCustomScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=3)
    with pytest.raises(ValueError):
        retrieve_timesteps(scheduler, timesteps=[1,2,3])
    with pytest.raises(ValueError):
        retrieve_timesteps(scheduler, sigmas=[0.1,0.2,0.3])

# 3. LARGE SCALE TEST CASES

def test_large_num_inference_steps():
    # Large num_inference_steps (but <1000 to avoid >100MB tensor)
    scheduler = BasicScheduler()
    N = 999
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=N)

def test_large_timesteps():
    # Large custom timesteps
    scheduler = TimestepsScheduler()
    N = 1000
    custom_timesteps = list(range(N))
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=custom_timesteps)

def test_large_sigmas():
    # Large custom sigmas
    scheduler = SigmasScheduler()
    N = 1000
    custom_sigmas = [float(i)/1000 for i in range(N)]
    timesteps, steps = retrieve_timesteps(scheduler, sigmas=custom_sigmas)

def test_large_device_and_types():
    # Large scale with device parameter and type checks
    scheduler = FullScheduler()
    N = 500
    custom_timesteps = list(range(N))
    device = torch.device("cpu")
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=custom_timesteps, device=device)

def test_large_multiple_calls_consistency():
    # Call retrieve_timesteps multiple times with different schedulers and large inputs
    N = 999
    schedulers = [BasicScheduler(), TimestepsScheduler(), FullScheduler()]
    for scheduler in schedulers:
        timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=N)

def test_large_sigmas_and_timesteps_mutual_exclusion():
    # Large sigmas and timesteps: should still raise ValueError
    scheduler = FullScheduler()
    N = 500
    with pytest.raises(ValueError):
        retrieve_timesteps(scheduler, timesteps=list(range(N)), sigmas=[float(i) for i in range(N)])
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import inspect
from typing import List, Optional, Union

# imports
import pytest  # used for our unit tests
import torch
from src.diffusers.pipelines.ltx.pipeline_ltx import retrieve_timesteps

# ---- Mock Schedulers for Testing ----

class BasicScheduler:
    """A simple scheduler supporting num_inference_steps and device."""
    def __init__(self):
        self.timesteps = None
        self.called_args = None

    def set_timesteps(self, num_inference_steps, device=None, **kwargs):
        # Store the arguments for verification
        self.called_args = (num_inference_steps, device)
        # Timesteps are simply a tensor from 0 to num_inference_steps-1
        self.timesteps = torch.arange(num_inference_steps, device=device, dtype=torch.long)

class TimestepsScheduler:
    """A scheduler that supports custom timesteps."""
    def __init__(self):
        self.timesteps = None
        self.called_args = None

    def set_timesteps(self, timesteps, device=None, **kwargs):
        self.called_args = (timesteps, device)
        # Accepts list of ints
        self.timesteps = torch.tensor(timesteps, device=device, dtype=torch.long)

class SigmasScheduler:
    """A scheduler that supports custom sigmas."""
    def __init__(self):
        self.timesteps = None
        self.called_args = None

    def set_timesteps(self, sigmas, device=None, **kwargs):
        self.called_args = (sigmas, device)
        # Accepts list of floats
        # For test, just convert sigmas to ints as timesteps
        self.timesteps = torch.tensor([int(s) for s in sigmas], device=device, dtype=torch.long)

class BothScheduler:
    """A scheduler that supports both timesteps and sigmas."""
    def __init__(self):
        self.timesteps = None
        self.called_args = None

    def set_timesteps(self, num_inference_steps=None, timesteps=None, sigmas=None, device=None, **kwargs):
        self.called_args = (num_inference_steps, timesteps, sigmas, device)
        if timesteps is not None:
            self.timesteps = torch.tensor(timesteps, device=device, dtype=torch.long)
        elif sigmas is not None:
            self.timesteps = torch.tensor([int(s) for s in sigmas], device=device, dtype=torch.long)
        elif num_inference_steps is not None:
            self.timesteps = torch.arange(num_inference_steps, device=device, dtype=torch.long)
        else:
            self.timesteps = torch.tensor([], device=device, dtype=torch.long)

class NoTimestepsScheduler:
    """A scheduler that does NOT support timesteps or sigmas."""
    def __init__(self):
        self.timesteps = None
        self.called_args = None

    def set_timesteps(self, num_inference_steps, device=None, **kwargs):
        self.called_args = (num_inference_steps, device)
        self.timesteps = torch.arange(num_inference_steps, device=device, dtype=torch.long)

# ------------------- Unit Tests -------------------

# 1. BASIC TEST CASES

def test_basic_num_inference_steps():
    # Test normal use with num_inference_steps
    scheduler = BasicScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=5)

def test_basic_timesteps_list():
    # Test with custom timesteps using TimestepsScheduler
    scheduler = TimestepsScheduler()
    custom_timesteps = [0, 2, 4, 6]
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=custom_timesteps)

def test_basic_sigmas_list():
    # Test with custom sigmas using SigmasScheduler
    scheduler = SigmasScheduler()
    custom_sigmas = [1.0, 2.0, 3.0]
    timesteps, steps = retrieve_timesteps(scheduler, sigmas=custom_sigmas)

def test_basic_device_cpu():
    # Test that device is passed and tensor is on correct device (cpu)
    scheduler = BasicScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=3, device="cpu")


def test_basic_scheduler_with_kwargs():
    # Test that extra kwargs are passed to set_timesteps
    class KwargsScheduler(BasicScheduler):
        def set_timesteps(self, num_inference_steps, device=None, foo=None, **kwargs):
            self.foo = foo
            super().set_timesteps(num_inference_steps, device=device)
    scheduler = KwargsScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=2, foo="bar")

# 2. EDGE TEST CASES

def test_timesteps_and_sigmas_both_raise():
    # Passing both timesteps and sigmas should raise ValueError
    scheduler = BothScheduler()
    with pytest.raises(ValueError) as excinfo:
        retrieve_timesteps(scheduler, timesteps=[1,2,3], sigmas=[0.1,0.2,0.3])

def test_timesteps_not_supported_raises():
    # If scheduler does not support timesteps, should raise
    scheduler = NoTimestepsScheduler()
    with pytest.raises(ValueError) as excinfo:
        retrieve_timesteps(scheduler, timesteps=[1,2,3])

def test_sigmas_not_supported_raises():
    # If scheduler does not support sigmas, should raise
    scheduler = NoTimestepsScheduler()
    with pytest.raises(ValueError) as excinfo:
        retrieve_timesteps(scheduler, sigmas=[0.1,0.2])

def test_timesteps_empty_list():
    # Passing empty timesteps list should return empty tensor and 0 steps
    scheduler = TimestepsScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=[])

def test_sigmas_empty_list():
    # Passing empty sigmas list should return empty tensor and 0 steps
    scheduler = SigmasScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, sigmas=[])

def test_num_inference_steps_zero():
    # Passing num_inference_steps=0 should return empty tensor and 0 steps
    scheduler = BasicScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=0)

def test_timesteps_negative_values():
    # Passing negative timesteps should work if scheduler accepts it
    scheduler = TimestepsScheduler()
    custom_timesteps = [-3, -1, 0, 2]
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=custom_timesteps)

def test_sigmas_float_and_negative():
    # Sigmas with negative and float values
    scheduler = SigmasScheduler()
    custom_sigmas = [-2.7, 0.0, 3.9]
    timesteps, steps = retrieve_timesteps(scheduler, sigmas=custom_sigmas)

def test_device_as_torch_device_object():
    # Pass device as torch.device object
    scheduler = BasicScheduler()
    device = torch.device("cpu")
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=2, device=device)

def test_kwargs_are_passed_through():
    # Ensure kwargs are passed to set_timesteps
    class CustomScheduler(BasicScheduler):
        def set_timesteps(self, num_inference_steps, device=None, custom_arg=None, **kwargs):
            self.custom_arg = custom_arg
            super().set_timesteps(num_inference_steps, device=device)
    scheduler = CustomScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=2, custom_arg="baz")

def test_scheduler_returns_non_long_tensor():
    # If scheduler.timesteps is not long dtype, should still work
    class FloatScheduler(BasicScheduler):
        def set_timesteps(self, num_inference_steps, device=None, **kwargs):
            self.timesteps = torch.arange(num_inference_steps, device=device, dtype=torch.float32)
    scheduler = FloatScheduler()
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=3)

# 3. LARGE SCALE TEST CASES

def test_large_num_inference_steps():
    # Test with large num_inference_steps (within 1000 elements)
    scheduler = BasicScheduler()
    N = 1000
    timesteps, steps = retrieve_timesteps(scheduler, num_inference_steps=N)

def test_large_custom_timesteps():
    # Test with large custom timesteps list
    scheduler = TimestepsScheduler()
    custom_timesteps = list(range(1000))
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=custom_timesteps)

def test_large_custom_sigmas():
    # Test with large custom sigmas list
    scheduler = SigmasScheduler()
    custom_sigmas = [float(i) for i in range(1000)]
    timesteps, steps = retrieve_timesteps(scheduler, sigmas=custom_sigmas)

def test_large_negative_timesteps():
    # Large negative timesteps
    scheduler = TimestepsScheduler()
    custom_timesteps = list(range(-1000, 0))
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=custom_timesteps)

def test_large_sparse_timesteps():
    # Large, non-contiguous timesteps
    scheduler = TimestepsScheduler()
    custom_timesteps = [i*10 for i in range(1000)]
    timesteps, steps = retrieve_timesteps(scheduler, timesteps=custom_timesteps)

def test_large_float_sigmas():
    # Large sigmas with float values
    scheduler = SigmasScheduler()
    custom_sigmas = [float(i)+0.5 for i in range(1000)]
    timesteps, steps = retrieve_timesteps(scheduler, sigmas=custom_sigmas)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-retrieve_timesteps-mbdhd3cq and push.

Codeflash

**Key Optimizations:**
- **Parameter Inspection Caching:** The dominant bottleneck was repeated calls to `inspect.signature(...).parameters.keys()` for every function invocation. By caching the parameter set *per scheduler class* in `_get_set_timesteps_param_set(cls)`, we reduce this to a one-time cost per scheduler class (for the process lifetime).
- **Minimal Imports:** `inspect` is only imported if necessary in the helper.
- **Logic flow and memory remain identical**, just far less repeated slow reflection.
- **Return value and all comments are preserved.**

This greatly increases speed especially for repeated calls and in hot loops.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jun 1, 2025
@codeflash-ai codeflash-ai bot requested a review from aseembits93 June 1, 2025 09:50
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants