Skip to content

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Jul 22, 2025

📄 393% (3.93x) speedup for qwen_model_profile in pydantic_ai_slim/pydantic_ai/profiles/qwen.py

⏱️ Runtime : 1.31 milliseconds 265 microseconds (best of 125 runs)

📝 Explanation and details

REFINEMENT Here’s an optimized version of your program. The main inefficiency is that you re-import and re-reference InlineDefsJsonSchemaTransformer each time you call the function, even though it is constant. By caching the constructed ModelProfile object, we can avoid redundant instantiations and speed up execution.

Explanation:

  • This avoids reconstructing the ModelProfile object on every call, saving both time and memory, and removes repeated lookups.
  • The function will return the exact same result as before.
  • Faster, especially if called many times.

If you need the returned ModelProfile to be unique for each call (e.g., if it's mutable), you can’t cache it; but with the code as written, there’s no use of model_name and the transformer is constant, so this optimization is safe.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 21 Passed
🌀 Generated Regression Tests 6429 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 1 Passed
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
codeflash_concolic_r85i594x/tmp7o6q195b/test_concolic_coverage.py::test_qwen_model_profile 458ns 83ns ✅452%
🌀 Generated Regression Tests and Runtime
import pytest  # used for our unit tests
# function to test
from pydantic_ai.profiles import ModelProfile
from pydantic_ai.profiles._json_schema import InlineDefsJsonSchemaTransformer
from pydantic_ai.profiles.qwen import qwen_model_profile

# unit tests

# 1. BASIC TEST CASES

def test_basic_valid_string_returns_model_profile():
    """Test that a typical Qwen model name returns a ModelProfile with correct transformer."""
    codeflash_output = qwen_model_profile("Qwen-7B-Chat"); profile = codeflash_output # 459ns -> 84ns (446% faster)

def test_basic_another_string_returns_model_profile():
    """Test that another valid string returns a ModelProfile."""
    codeflash_output = qwen_model_profile("Qwen-14B"); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_basic_empty_string_returns_model_profile():
    """Test that an empty string is still treated as a valid model name."""
    codeflash_output = qwen_model_profile(""); profile = codeflash_output # 458ns -> 84ns (445% faster)

def test_basic_whitespace_string_returns_model_profile():
    """Test that a whitespace-only string is treated as valid."""
    codeflash_output = qwen_model_profile("   "); profile = codeflash_output # 416ns -> 83ns (401% faster)

# 2. EDGE TEST CASES

def test_edge_none_input_returns_none():
    """Test that None input returns None."""
    codeflash_output = qwen_model_profile(None); profile = codeflash_output # 458ns -> 84ns (445% faster)

def test_edge_integer_input_returns_none():
    """Test that integer input returns None."""
    codeflash_output = qwen_model_profile(123); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_edge_float_input_returns_none():
    """Test that float input returns None."""
    codeflash_output = qwen_model_profile(1.23); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_edge_list_input_returns_none():
    """Test that list input returns None."""
    codeflash_output = qwen_model_profile(["Qwen-7B-Chat"]); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_edge_dict_input_returns_none():
    """Test that dict input returns None."""
    codeflash_output = qwen_model_profile({"model": "Qwen-7B-Chat"}); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_edge_bool_input_returns_none():
    """Test that boolean input returns None."""
    codeflash_output = qwen_model_profile(True); profile = codeflash_output # 458ns -> 83ns (452% faster)

def test_edge_bytes_input_returns_none():
    """Test that bytes input returns None."""
    codeflash_output = qwen_model_profile(b"Qwen-7B-Chat"); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_edge_object_input_returns_none():
    """Test that arbitrary object input returns None."""
    class Dummy: pass
    codeflash_output = qwen_model_profile(Dummy()); profile = codeflash_output # 417ns -> 83ns (402% faster)

def test_edge_unicode_string_returns_model_profile():
    """Test that a unicode string is accepted."""
    codeflash_output = qwen_model_profile("Qwēn-模型"); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_edge_long_string_returns_model_profile():
    """Test that a very long string is accepted."""
    long_name = "Qwen-" + "X" * 500
    codeflash_output = qwen_model_profile(long_name); profile = codeflash_output # 417ns -> 83ns (402% faster)

# 3. LARGE SCALE TEST CASES

def test_large_scale_many_unique_names():
    """Test that the function can handle a large number of unique model names."""
    # Generate 1000 unique names
    names = [f"Qwen-{i}" for i in range(1000)]
    for name in names:
        codeflash_output = qwen_model_profile(name); profile = codeflash_output # 200μs -> 41.1μs (389% faster)

def test_large_scale_identical_names():
    """Test that repeated calls with the same name return valid profiles."""
    name = "Qwen-7B-Chat"
    for _ in range(1000):
        codeflash_output = qwen_model_profile(name); profile = codeflash_output # 202μs -> 41.1μs (392% faster)

def test_large_scale_mixed_types():
    """Test a large batch of mixed valid and invalid input types."""
    valid_names = [f"Qwen-{i}" for i in range(500)]
    invalid_inputs = [None, 123, 1.23, [], {}, True, b"abc", object()] * 50  # 400 elements
    mixed_inputs = valid_names + invalid_inputs
    for inp in mixed_inputs:
        codeflash_output = qwen_model_profile(inp); profile = codeflash_output # 184μs -> 37.0μs (397% faster)
        if isinstance(inp, str):
            pass
        else:
            pass

def test_large_scale_extremely_long_string():
    """Test with a string of near-maximum allowed length (within practical test limits)."""
    very_long_name = "Qwen-" + "Y" * 999
    codeflash_output = qwen_model_profile(very_long_name); profile = codeflash_output # 417ns -> 83ns (402% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
# function to test
from pydantic_ai.profiles import ModelProfile
from pydantic_ai.profiles._json_schema import InlineDefsJsonSchemaTransformer
from pydantic_ai.profiles.qwen import qwen_model_profile

# unit tests

# ---------------------------
# BASIC TEST CASES
# ---------------------------

def test_qwen_model_profile_basic_qwen_model():
    """Test with a typical Qwen model name."""
    codeflash_output = qwen_model_profile("qwen-7b"); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_qwen_model_profile_basic_qwen_uppercase():
    """Test with Qwen model name in uppercase."""
    codeflash_output = qwen_model_profile("QWEN-14B"); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_qwen_model_profile_basic_non_qwen_model():
    """Test with a non-Qwen model name."""
    codeflash_output = qwen_model_profile("gpt-3"); profile = codeflash_output # 375ns -> 83ns (352% faster)

def test_qwen_model_profile_basic_empty_string():
    """Test with an empty string."""
    codeflash_output = qwen_model_profile(""); profile = codeflash_output # 417ns -> 83ns (402% faster)

def test_qwen_model_profile_basic_trailing_spaces():
    """Test with trailing and leading spaces in model name."""
    codeflash_output = qwen_model_profile("  qwen-13b  "); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_qwen_model_profile_basic_qwen_in_middle():
    """Test with 'qwen' not at the start."""
    codeflash_output = qwen_model_profile("openai-qwen-7b"); profile = codeflash_output # 416ns -> 83ns (401% faster)

# ---------------------------
# EDGE TEST CASES
# ---------------------------


def test_qwen_model_profile_edge_similar_name():
    """Test with names that are similar but not Qwen."""
    codeflash_output = qwen_model_profile("qwena-7b") # 458ns -> 125ns (266% faster)
    codeflash_output = qwen_model_profile("qwenner") # 291ns -> 42ns (593% faster)
    codeflash_output = qwen_model_profile("qwenish-7b") # 209ns -> 41ns (410% faster)

def test_qwen_model_profile_edge_case_sensitivity():
    """Test with mixed case model name."""

def test_qwen_model_profile_edge_long_string():
    """Test with a very long string that starts with 'qwen'."""
    name = "qwen" + "x" * 500
    codeflash_output = qwen_model_profile(name); profile = codeflash_output # 459ns -> 83ns (453% faster)

def test_qwen_model_profile_edge_long_non_qwen_string():
    """Test with a very long string that does not start with 'qwen'."""
    name = "x" * 1000
    codeflash_output = qwen_model_profile(name); profile = codeflash_output # 416ns -> 83ns (401% faster)

def test_qwen_model_profile_edge_only_qwen():
    """Test with 'qwen' only."""
    codeflash_output = qwen_model_profile("qwen"); profile = codeflash_output # 458ns -> 83ns (452% faster)

def test_qwen_model_profile_edge_qwen_with_symbols():
    """Test with 'qwen' followed by symbols."""
    codeflash_output = qwen_model_profile("qwen_7b@2024!"); profile = codeflash_output # 417ns -> 83ns (402% faster)

# ---------------------------
# LARGE SCALE TEST CASES
# ---------------------------

def test_qwen_model_profile_large_many_qwen_models():
    """Test performance and correctness with many Qwen model names."""
    for i in range(1000):
        name = f"qwen-model-{i}"
        codeflash_output = qwen_model_profile(name); profile = codeflash_output # 200μs -> 41.1μs (388% faster)

def test_qwen_model_profile_large_many_non_qwen_models():
    """Test performance and correctness with many non-Qwen model names."""
    for i in range(1000):
        name = f"gpt-model-{i}"
        codeflash_output = qwen_model_profile(name); profile = codeflash_output # 205μs -> 41.1μs (399% faster)

def test_qwen_model_profile_large_mixed_models():
    """Test with a mix of Qwen and non-Qwen model names."""
    for i in range(500):
        # Qwen
        name_qwen = f"qwen-{i}"
        codeflash_output = qwen_model_profile(name_qwen); profile_qwen = codeflash_output # 102μs -> 20.6μs (396% faster)
        # Non-Qwen
        name_non_qwen = f"other-{i}"
        codeflash_output = qwen_model_profile(name_non_qwen); profile_non_qwen = codeflash_output # 101μs -> 20.5μs (394% faster)

def test_qwen_model_profile_large_edge_cases():
    """Test with a mix of edge-case names in a large batch."""
    names = ["qwen"] * 100 + ["qwen-7b"] * 100 + ["QWEN-14B"] * 100 + ["gpt-3"] * 100 + [""] * 100
    for name in names:
        codeflash_output = qwen_model_profile(name); profile = codeflash_output # 100μs -> 20.6μs (390% faster)
        if name.lower().startswith("qwen"):
            pass
        else:
            pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from pydantic_ai.profiles._json_schema import InlineDefsJsonSchemaTransformer
from pydantic_ai.profiles.qwen import qwen_model_profile

def test_qwen_model_profile():
    qwen_model_profile('')

To edit these changes git checkout codeflash/optimize-qwen_model_profile-mddvar40 and push.

Codeflash

REFINEMENT Here’s an optimized version of your program. The main inefficiency is that you re-import and re-reference `InlineDefsJsonSchemaTransformer` each time you call the function, even though it is constant. By caching the constructed `ModelProfile` object, we can avoid redundant instantiations and speed up execution.



**Explanation:**  
- This avoids reconstructing the `ModelProfile` object on every call, saving both time and memory, and removes repeated lookups.
- The function will return the exact same result as before.  
- Faster, especially if called many times.

If you need the returned `ModelProfile` to be unique for each call (e.g., if it's mutable), you can’t cache it; but with the code as written, there’s no use of `model_name` and the transformer is constant, so this optimization is safe.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jul 22, 2025
@codeflash-ai codeflash-ai bot requested a review from aseembits93 July 22, 2025 01:40
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by Codeflash AI
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants