@@ -510,13 +510,19 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
510510 coefficients for `k`-th data set are in ``p[:,k]``.
511511
512512 residuals, rank, singular_values, rcond
513- Present only if `full` = True. Residuals is sum of squared residuals
514- of the least-squares fit, the effective rank of the scaled Vandermonde
515- coefficient matrix, its singular values, and the specified value of
516- `rcond`. For more details, see `linalg.lstsq`.
513+ These values are only returned if ``full == True``
514+
515+ - residuals -- sum of squared residuals of the least squares fit
516+ - rank -- the effective rank of the scaled Vandermonde
517+ coefficient matrix
518+ - singular_values -- singular values of the scaled Vandermonde
519+ coefficient matrix
520+ - rcond -- value of `rcond`.
521+
522+ For more details, see `numpy.linalg.lstsq`.
517523
518524 V : ndarray, shape (M,M) or (M,M,K)
519- Present only if `full` = False and `cov`= True. The covariance
525+ Present only if ``full == False`` and ``cov == True`` . The covariance
520526 matrix of the polynomial coefficient estimates. The diagonal of
521527 this matrix are the variance estimates for each coefficient. If y
522528 is a 2-D array, then the covariance matrix for the `k`-th data set
@@ -527,7 +533,7 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
527533 -----
528534 RankWarning
529535 The rank of the coefficient matrix in the least-squares fit is
530- deficient. The warning is only raised if `full` = False.
536+ deficient. The warning is only raised if ``full == False`` .
531537
532538 The warnings can be turned off by
533539
0 commit comments