@@ -20,6 +20,8 @@ The space component maps the sky with the HEALPix sky
20
20
tessellation to represent regions on the sky by hierarchically grouped HEALPix cells.
21
21
It other words, a Spatial MOC is a set of HEALPix cells at different orders.
22
22
23
+ The idea is the same for Time MOCs. The time axis is split into time cells.
24
+
23
25
For those wanting to know more about MOCs, please refer to `the MOC 2.0 specification
24
26
document <https://ivoa.net/documents/MOC/20220727/REC-moc-2.0-20220727.pdf> `_.
25
27
@@ -32,8 +34,8 @@ What's the MOC Server?
32
34
The MOC Server is a service of astronomical resources organized by spatial and/or
33
35
temporal coverages following the Space and Time MOC specification.
34
36
In the MOC Server, there a few tens of thousands of astronomical collections.
35
- They each have and identifier ``ID `` and a set of properties that describe their content.
36
- This is a practical way of finding datasets with criteria on time and space.
37
+ They each have an identifier ``ID `` and a set of properties that describe their content.
38
+ This is a practical way of finding datasets with criteria on time and/or space.
37
39
38
40
The meta-data properties are freely assigned by each publisher. You can get the list of
39
41
properties with their frequency of usage and examples example with
@@ -67,15 +69,16 @@ Querying with a region
67
69
68
70
The MOCServer is optimized to return the datasets having at least one source lying in a
69
71
specific sky region (or time interval).
70
- The regions can be provided either as astropy-regions from the ``region `` python library,
72
+ The regions can be provided either as astropy-regions from the ``regions `` python library,
71
73
or as an accepted MOC type (`mocpy.TimeMOC `, `mocpy.MOC `, `~mocpy.STMOC `).
72
74
The frequency MOCs are not yet available.
73
75
74
76
Performing a query on a cone region
75
77
-----------------------------------
76
78
77
79
Let's get the datasets for which all the data is comprised in a cone (this is
78
- what the ``enclosed `` option means for intersect).
80
+ what the ``enclosed `` option means for intersect). We also restrict our search to
81
+ datasets describing the sky (with ``spacesys=sky ``).
79
82
80
83
.. doctest-remote-data ::
81
84
@@ -85,7 +88,7 @@ what the ``enclosed`` option means for intersect).
85
88
>>> center = coordinates.SkyCoord(10.8 , 32.2 , unit = ' deg' )
86
89
>>> radius = coordinates.Angle(0.5 , unit = ' deg' )
87
90
>>> cone = CircleSkyRegion(center, radius)
88
- >>> MOCServer.query_region(region = cone, intersect = " enclosed" , spacesys = " C " ) # doctest: +IGNORE_OUTPUT
91
+ >>> MOCServer.query_region(region = cone, intersect = " enclosed" , spacesys = " sky " ) # doctest: +IGNORE_OUTPUT
89
92
<Table length=450>
90
93
ID ...
91
94
str49 ...
@@ -112,7 +115,8 @@ what the ``enclosed`` option means for intersect).
112
115
wfau.roe.ac.uk/UHSDR1/J ...
113
116
114
117
You can also use this method with `regions.PolygonSkyRegion `, `mocpy.MOC `, `mocpy.TimeMOC `,
115
- and `mocpy.STMOC `.
118
+ and `mocpy.STMOC `. Not providing the region parameter means that the search is done on
119
+ the whole sky (or the whole planet, if we chose a different ``spacesys ``).
116
120
117
121
Querying by meta-data
118
122
=====================
@@ -161,13 +165,15 @@ Let's add a criteria to get only images from the previous query:
161
165
wfau.roe.ac.uk/P/UHSDR1/J image 0.3083
162
166
163
167
164
- Looking at the ``dataproduct_type `` column, all the datasets are indeed images.
168
+ Looking at the ``dataproduct_type `` column, all the datasets are indeed images. There
169
+ are a few less results than when we did not apply this additional criteria.
165
170
166
- ` This page < http://alasky.unistra.fr/MocServer/example >`_ on the web interface of the
167
- MOCServer gives examples of some filtering expressions .
171
+ Other examples for filtering expressions can be found on the ` help page of the MOC Server
172
+ web interface <http://alasky.unistra.fr/MocServer/example> `_ .
168
173
169
- Alternatively, you can search on the whole sky by ommitting the region parameter.
170
- The next example retrieves all the ``moc_access_url `` of the Hubble surveys:
174
+ Let's do a search on the whole sky by omitting the region parameter.
175
+ The next example retrieves all the ``moc_access_url `` of datasets having ``HST `` in
176
+ their identifier. These correspond to the Hubble surveys:
171
177
172
178
.. doctest-remote-data ::
173
179
@@ -205,7 +211,7 @@ Query for HiPS surveys
205
211
The MOCServer contains an extensive list of HiPS, for images and catalogs. These
206
212
progressive surveys can be displayed in applications such as Aladin or ESASky.
207
213
The `astroquery.mocserver.MOCServerClass.query_hips ` method allows to find these HiPS.
208
- It accepts the same parameters (``region `` and ``meta_data `` for example as the other)
214
+ It accepts the same parameters (``region `` and ``meta_data `` for example) as the other
209
215
methods. The only difference is that the output will only contain HiPS data.
210
216
211
217
.. doctest-remote-data ::
@@ -300,13 +306,13 @@ Another parameter called ``max_rec`` specifies an upper limit for the number of
300
306
CDS/J/ApJS/257/54/table1 ... catalog
301
307
CDS/III/39A/catalog ... catalog
302
308
303
- This astropy has only 3 rows although we know that more datasets match the query.
309
+ This result has only 3 rows although we know that more datasets match the query.
304
310
The result will come faster than requesting all results.
305
311
306
312
Returning a ``mocpy `` object as a result
307
313
----------------------------------------
308
314
309
- I you need want the union of all the MOCs of the datasets matching the query, you can
315
+ If you want the union of all the MOCs of the datasets matching the query, you can
310
316
get the result as a `mocpy.MOC `, `mocpy.TimeMOC `, or `mocpy.STMOC ` object instead of an
311
317
`astropy.table.Table ` by setting the parameter ``return_moc `` to ``smoc ``, ``tmoc ``, or
312
318
``stmoc ``. An additional parameter ``max_norder `` allows to set the resolution/precision
@@ -346,16 +352,17 @@ object) of the ``GALEXGR6/AIS/FUV`` survey.
346
352
... f " { moc_galex.max_time.iso} . " )
347
353
GALEX GR6 contains data taken from 2010-03-31 18:02:05.602 to 2010-06-01 18:57:24.787.
348
354
349
-
350
- The ``mocserver `` package can therefore be used in complementarity with `mocpy `_.
351
- We can now retrieve `mocpy.MOC ` objects coming from the MOCServer and manipulate them
352
- with `mocpy `_.
355
+ .. note ::
356
+ Note that for Space-Time MOCs the ``max_norder `` parameter is not an integer but a
357
+ string that contains the information about both the spatial order and the time order.
358
+ Here, we requested a spatial order of 7 (roughly 27') and a time order of 26 (roughly
359
+ 9 hours).
353
360
354
361
Finding data on a specific solar system body
355
362
--------------------------------------------
356
363
357
364
The default value for ``spacesys `` is None. It means that we're looking for data for the
358
- sky and all other possible frames. This can take all the values listed by
365
+ sky and all other possible frames. This parameter can take all the values listed by
359
366
`astroquery.mocserver.MOCServerClass.list_spacesys `:
360
367
361
368
.. doctest-remote-data ::
@@ -367,17 +374,17 @@ sky and all other possible frames. This can take all the values listed by
367
374
Where the special value ``sky `` means any celestial frame (mainly ``equatorial `` and
368
375
``galactic ``).
369
376
370
- The ``spacesys `` can be used in any of the query methods like so:
377
+ The ``spacesys `` parameter can be used in any of the query methods like so:
371
378
372
379
.. doctest-remote-data ::
373
380
374
381
>>> from astroquery.mocserver import MOCServer
375
- >>> MOCServer.query_hips(spacesys = " ariel" ) # doctest: +IGNORE_OUTPUT
382
+ >>> MOCServer.query_hips(spacesys = " ariel" )
376
383
<Table length=1>
377
- ID obs_title obs_description dataproduct_type
378
- str19 str13 str65 str5
379
- ------------------- ------------- ----------------------------------------------------------------- ----------------
380
- CDS/P/Ariel/Voyager Ariel Voyager Ariel Uranus satellite map mosaicked with Voyager imagery by USGS image
384
+ ID obs_title ... dataproduct_type
385
+ str19 str13 ... str5
386
+ ------------------- ------------- ... ----------------
387
+ CDS/P/Ariel/Voyager Ariel Voyager ... image
381
388
382
389
383
390
Reference/API
0 commit comments