Skip to content

Commit 1500a43

Browse files
ManonMarchandbsipocz
authored andcommitted
docs: various docs typos/precisions
1 parent ba4bec0 commit 1500a43

File tree

1 file changed

+32
-25
lines changed

1 file changed

+32
-25
lines changed

docs/mocserver/mocserver.rst

Lines changed: 32 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,8 @@ The space component maps the sky with the HEALPix sky
2020
tessellation to represent regions on the sky by hierarchically grouped HEALPix cells.
2121
It other words, a Spatial MOC is a set of HEALPix cells at different orders.
2222

23+
The idea is the same for Time MOCs. The time axis is split into time cells.
24+
2325
For those wanting to know more about MOCs, please refer to `the MOC 2.0 specification
2426
document <https://ivoa.net/documents/MOC/20220727/REC-moc-2.0-20220727.pdf>`_.
2527

@@ -32,8 +34,8 @@ What's the MOC Server?
3234
The MOC Server is a service of astronomical resources organized by spatial and/or
3335
temporal coverages following the Space and Time MOC specification.
3436
In the MOC Server, there a few tens of thousands of astronomical collections.
35-
They each have and identifier ``ID`` and a set of properties that describe their content.
36-
This is a practical way of finding datasets with criteria on time and space.
37+
They each have an identifier ``ID`` and a set of properties that describe their content.
38+
This is a practical way of finding datasets with criteria on time and/or space.
3739

3840
The meta-data properties are freely assigned by each publisher. You can get the list of
3941
properties with their frequency of usage and examples example with
@@ -67,15 +69,16 @@ Querying with a region
6769

6870
The MOCServer is optimized to return the datasets having at least one source lying in a
6971
specific sky region (or time interval).
70-
The regions can be provided either as astropy-regions from the ``region`` python library,
72+
The regions can be provided either as astropy-regions from the ``regions`` python library,
7173
or as an accepted MOC type (`mocpy.TimeMOC`, `mocpy.MOC`, `~mocpy.STMOC`).
7274
The frequency MOCs are not yet available.
7375

7476
Performing a query on a cone region
7577
-----------------------------------
7678

7779
Let's get the datasets for which all the data is comprised in a cone (this is
78-
what the ``enclosed`` option means for intersect).
80+
what the ``enclosed`` option means for intersect). We also restrict our search to
81+
datasets describing the sky (with ``spacesys=sky``).
7982

8083
.. doctest-remote-data::
8184

@@ -85,7 +88,7 @@ what the ``enclosed`` option means for intersect).
8588
>>> center = coordinates.SkyCoord(10.8, 32.2, unit='deg')
8689
>>> radius = coordinates.Angle(0.5, unit='deg')
8790
>>> cone = CircleSkyRegion(center, radius)
88-
>>> MOCServer.query_region(region=cone, intersect="enclosed", spacesys="C") # doctest: +IGNORE_OUTPUT
91+
>>> MOCServer.query_region(region=cone, intersect="enclosed", spacesys="sky") # doctest: +IGNORE_OUTPUT
8992
<Table length=450>
9093
ID ...
9194
str49 ...
@@ -112,7 +115,8 @@ what the ``enclosed`` option means for intersect).
112115
wfau.roe.ac.uk/UHSDR1/J ...
113116

114117
You can also use this method with `regions.PolygonSkyRegion`, `mocpy.MOC`, `mocpy.TimeMOC`,
115-
and `mocpy.STMOC`.
118+
and `mocpy.STMOC`. Not providing the region parameter means that the search is done on
119+
the whole sky (or the whole planet, if we chose a different ``spacesys``).
116120

117121
Querying by meta-data
118122
=====================
@@ -161,13 +165,15 @@ Let's add a criteria to get only images from the previous query:
161165
wfau.roe.ac.uk/P/UHSDR1/J image 0.3083
162166

163167

164-
Looking at the ``dataproduct_type`` column, all the datasets are indeed images.
168+
Looking at the ``dataproduct_type`` column, all the datasets are indeed images. There
169+
are a few less results than when we did not apply this additional criteria.
165170

166-
`This page <http://alasky.unistra.fr/MocServer/example>`_ on the web interface of the
167-
MOCServer gives examples of some filtering expressions.
171+
Other examples for filtering expressions can be found on the `help page of the MOC Server
172+
web interface <http://alasky.unistra.fr/MocServer/example>`_.
168173

169-
Alternatively, you can search on the whole sky by ommitting the region parameter.
170-
The next example retrieves all the ``moc_access_url`` of the Hubble surveys:
174+
Let's do a search on the whole sky by omitting the region parameter.
175+
The next example retrieves all the ``moc_access_url`` of datasets having ``HST`` in
176+
their identifier. These correspond to the Hubble surveys:
171177

172178
.. doctest-remote-data::
173179

@@ -205,7 +211,7 @@ Query for HiPS surveys
205211
The MOCServer contains an extensive list of HiPS, for images and catalogs. These
206212
progressive surveys can be displayed in applications such as Aladin or ESASky.
207213
The `astroquery.mocserver.MOCServerClass.query_hips` method allows to find these HiPS.
208-
It accepts the same parameters (``region`` and ``meta_data`` for example as the other)
214+
It accepts the same parameters (``region`` and ``meta_data`` for example) as the other
209215
methods. The only difference is that the output will only contain HiPS data.
210216

211217
.. doctest-remote-data::
@@ -300,13 +306,13 @@ Another parameter called ``max_rec`` specifies an upper limit for the number of
300306
CDS/J/ApJS/257/54/table1 ... catalog
301307
CDS/III/39A/catalog ... catalog
302308

303-
This astropy has only 3 rows although we know that more datasets match the query.
309+
This result has only 3 rows although we know that more datasets match the query.
304310
The result will come faster than requesting all results.
305311

306312
Returning a ``mocpy`` object as a result
307313
----------------------------------------
308314

309-
I you need want the union of all the MOCs of the datasets matching the query, you can
315+
If you want the union of all the MOCs of the datasets matching the query, you can
310316
get the result as a `mocpy.MOC`, `mocpy.TimeMOC`, or `mocpy.STMOC` object instead of an
311317
`astropy.table.Table` by setting the parameter ``return_moc`` to ``smoc``, ``tmoc``, or
312318
``stmoc``. An additional parameter ``max_norder`` allows to set the resolution/precision
@@ -346,16 +352,17 @@ object) of the ``GALEXGR6/AIS/FUV`` survey.
346352
... f" {moc_galex.max_time.iso}.")
347353
GALEX GR6 contains data taken from 2010-03-31 18:02:05.602 to 2010-06-01 18:57:24.787.
348354

349-
350-
The ``mocserver`` package can therefore be used in complementarity with `mocpy`_.
351-
We can now retrieve `mocpy.MOC` objects coming from the MOCServer and manipulate them
352-
with `mocpy`_.
355+
.. note::
356+
Note that for Space-Time MOCs the ``max_norder`` parameter is not an integer but a
357+
string that contains the information about both the spatial order and the time order.
358+
Here, we requested a spatial order of 7 (roughly 27') and a time order of 26 (roughly
359+
9 hours).
353360

354361
Finding data on a specific solar system body
355362
--------------------------------------------
356363

357364
The default value for ``spacesys`` is None. It means that we're looking for data for the
358-
sky and all other possible frames. This can take all the values listed by
365+
sky and all other possible frames. This parameter can take all the values listed by
359366
`astroquery.mocserver.MOCServerClass.list_spacesys`:
360367

361368
.. doctest-remote-data::
@@ -367,17 +374,17 @@ sky and all other possible frames. This can take all the values listed by
367374
Where the special value ``sky`` means any celestial frame (mainly ``equatorial`` and
368375
``galactic``).
369376

370-
The ``spacesys`` can be used in any of the query methods like so:
377+
The ``spacesys`` parameter can be used in any of the query methods like so:
371378

372379
.. doctest-remote-data::
373380

374381
>>> from astroquery.mocserver import MOCServer
375-
>>> MOCServer.query_hips(spacesys="ariel") # doctest: +IGNORE_OUTPUT
382+
>>> MOCServer.query_hips(spacesys="ariel")
376383
<Table length=1>
377-
ID obs_title obs_description dataproduct_type
378-
str19 str13 str65 str5
379-
------------------- ------------- ----------------------------------------------------------------- ----------------
380-
CDS/P/Ariel/Voyager Ariel Voyager Ariel Uranus satellite map mosaicked with Voyager imagery by USGS image
384+
ID obs_title ... dataproduct_type
385+
str19 str13 ... str5
386+
------------------- ------------- ... ----------------
387+
CDS/P/Ariel/Voyager Ariel Voyager ... image
381388

382389

383390
Reference/API

0 commit comments

Comments
 (0)