@@ -25,23 +25,27 @@ Available IRSA catalogs
2525
2626To get a concise list of IRSA catalogs available to query, use the
2727`~.astroquery.ipac.irsa.IrsaClass.list_catalogs ` method.
28- The output consists of two fields for each catalog. To query a
28+ The output consists of two fields for each catalog, the name of the catalog
29+ and a very short description. To query a
2930specific catalog, the first field can be entered as the value of the
3031``catalog `` parameter in the `~.astroquery.ipac.irsa.IrsaClass.query_region ` method.
32+ You can also use the ``filter `` argument to return only the catalogs with
33+ name matches to the specified string.
34+
3135
3236.. doctest-remote-data ::
3337
3438 >>> from astroquery.ipac.irsa import Irsa
35- >>> Irsa.list_catalogs() # doctest: +IGNORE_OUTPUT
36- {'a1763t2': 'Abell 1763 Source Catalog',
37- 'a1763t3': 'Abell 1763 MIPS 70 micron Catalog',
38- 'acs_iphot_sep07': 'COSMOS ACS I-band photometry catalog September 2007',
39- 'akari_fis': 'Akari/FIS Bright Source Catalogue',
40- 'akari_irc': 'Akari/IRC Point Source Catalogue',
41- 'astsight': 'IRAS Minor Planet Survey',
42- ...
39+ >>> Irsa.list_catalogs(filter = ' spitzer' ) # doctest: +IGNORE_OUTPUT
40+ {'spitzer.safires_images': 'Spitzer Archival FIR Extragalactic Survey (SAFIRES) Images',
41+ 'spitzer.safires_science': 'Spitzer SAFIRES Science Image Metadata',
42+ 'spitzer.safires_ancillary': 'Spitzer SAFIRES Ancillary Image Metadata',
43+ 'spitzer.sage_images': 'SAGE Images',
44+ 'spitzer.sage_mips_mos': 'Spitzer SAGE MIPS Mosaic Image Metadata',
4345 ...
44- 'xmm_cat_s05': "SWIRE XMM_LSS Region Spring '05 Spitzer Catalog"}
46+ 'spitzer.ssgss_irs_sl_ll': 'SSGSS IRS SL LL Spectra',
47+ 'spitzer.swire_images': 'Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) Images',
48+ 'herschel.hops_spitzer': 'HOPS Spitzer Metadata'}
4549
4650To get a full list of information available for each available
4751catalog, use the ``full `` keyword argument. The output consists of many columns for each catalog.
@@ -52,14 +56,16 @@ the `~astroquery.ipac.irsa.IrsaClass.query_region` method.
5256
5357 >>> from astroquery.ipac.irsa import Irsa
5458 >>> Irsa.list_catalogs(full = True ) # doctest: +IGNORE_OUTPUT
55- <DALResultsTable length=934>
56- table_index schema_name table_name description ... irsa_access_flag irsa_nrows irsa_odbc_datasource irsa_spatial_idx_name
57- int32 object object object ... int32 int64 object object
58- ----------- ----------- ---------------------------------- --------------------------------------------- ... ---------------- ---------- -------------------- ---------------------
59- 303 spitzer spitzer.m31irac_image M31IRAC Images ... 30 4 postgres
60- 304 spitzer mipslg MIPS Local Galaxies Catalog ... 30 240 spitzer SPT_IND_MIPSLG
61- 305 spitzer spitzer.mips_lg_images MIPS Local Galaxies Images ... 30 606 postgres
62- ...
59+ <Table length=951>
60+ table_index schema_name table_name ... irsa_nrows irsa_odbc_datasource irsa_spatial_idx_name
61+ int32 object object ... int64 object object
62+ ----------- ----------- ---------------------------- ... ---------- -------------------- ---------------------
63+ 101 wax cf_info ... 456480 wax SPTC01
64+ 102 wax cf_link ... 204143440 wax
65+ 103 twomass ext_src_c ... 403811 twomass EXT_SRC_CIX413
66+ 104 wax ecf_info ... 2146 wax SPTETC01
67+ 105 wax ecf_link ... 473971 wax
68+ ...
6369
6470
6571Spatial search types
@@ -286,29 +292,28 @@ To list available collections for SIA queries, the
286292`~astroquery.ipac.irsa.IrsaClass.list_collections ` method is provided, and
287293will return a `~astropy.table.Table `. You can use the ``servicetype ``
288294argument to filter for image or spectral collections using ``'SIA' `` or
289- ``'SSA' `` respectively:
295+ ``'SSA' `` respectively. You can also use the ``filter `` argument to show
296+ only the collections with the given filter strings in the collection names.
290297
291298.. doctest-remote-data ::
292299
293300 >>> from astroquery.ipac.irsa import Irsa
294- >>> Irsa.list_collections(servicetype = ' SIA' )
295- <Table length=104>
296- collection
297- object
298- ---------------------
299- akari_allskymaps
300- blast
301- bolocam_gps
302- bolocam_lh
303- bolocam_planck_sz
304- ...
305- wise_allsky
306- wise_allwise
307- wise_fdepa
308- wise_prelim
309- wise_prelim_2bandcryo
310- wise_unwise
311- wise_z0mgs
301+ >>> Irsa.list_collections(servicetype = ' SIA' , filter = ' spitzer' )
302+ <Table length=38>
303+ collection
304+ object
305+ -------------------
306+ spitzer_abell1763
307+ spitzer_clash
308+ spitzer_cosmic_dawn
309+ spitzer_cygx
310+ spitzer_deepdrill
311+ ...
312+ spitzer_spuds
313+ spitzer_srelics
314+ spitzer_ssdf
315+ spitzer_swire
316+ spitzer_taurus
312317
313318Now open a cutout image for one of the science images. You could either use
314319the the IRSA on-premise data or the cloud version of it using the
0 commit comments