Skip to content

A hackathon project analyzing the feasibility of setting up dark stores using data-driven insights. Focuses on demand clustering, location intelligence and logistics optimization.

License

Notifications You must be signed in to change notification settings

atharvbyadav/Dark-Store-Feasibility-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

32 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿ›’ Dark Store Feasibility Analysis ๐Ÿ“Š

An Interactive AI-Powered Tool for Strategic Dark Store Placement

Python Streamlit MIT License Open Source Project Status

Made with Love Deployed with Streamlit Last Commit


๐Ÿš€ Live Demo

๐Ÿ”— Try it out now: dark-store.streamlit.app

๐Ÿ”— GitHub Repository: Dark Store Feasibility Analysis


๐Ÿš€ Project Overview

Dark Stores are closed fulfillment centers designed exclusively for online orders, enabling faster deliveries and efficient inventory management. Where should these stores be located to maximize efficiency and revenue?

This project provides a data-driven solution to analyze, predict and recommend optimal locations for Dark Stores using Machine Learning, Data Visualization and Interactive Maps.

๐Ÿ”น Key Features:
โœ… Predict Demand for Different Neighborhoods
โœ… Recommend Top 6 Locations to Open Dark Stores
โœ… Identify High-Demand Areas Needing Multiple Stores
โœ… Visualize Trends with Interactive Graphs & Maps
โœ… Machine Learning-Based Demand Forecasting


๐Ÿ—๏ธ How It Works

1๏ธโƒฃ Data Collection & Cleaning

  • Raw data is processed in Google Colab notebooks (included in this repo).
  • The cleaned, processed dataset is used for predictions.

2๏ธโƒฃ Data Analysis & Visualization

  • Population growth, order volume trends and demand spikes analyzed.
  • Graphs & charts provide insights into neighborhood potential.

3๏ธโƒฃ Machine Learning Model

  • Uses Linear Regression to predict future demand.
  • Evaluated with Mean Absolute Error (MAE) & RMSE for accuracy.

4๏ธโƒฃ Streamlit Web App

  • Users can interact with data, view recommendations and explore maps.

๐Ÿ”ฅ Tech Stack

Component Technology Used
Programming Python ๐Ÿ
Web Framework Streamlit ๐ŸŽˆ
Data Processing Pandas, NumPy
Machine Learning Scikit-Learn ๐Ÿค–
Visualization Plotly, Matplotlib ๐Ÿ“Š
Mapping Folium ๐Ÿ—บ๏ธ
Data Cleaning Google Colab ๐Ÿš€

๐Ÿ–ฅ๏ธ Installation & Setup

๐Ÿ”น Clone the Repository

git clone https://github.com/atharvbyadav/Dark-Store-Feasibility-Analysis.git

๐Ÿ”น Run the Streamlit App

streamlit run MainScript.py

๐Ÿ“‚ Project Structure

Only for this repo. You can change data as per your need and upload your own Data Sets for Analysis.

๐Ÿ“ฆ Dark-Store-Feasibility  
โ”‚-- ๐Ÿ“‚ data  
โ”‚   โ”‚-- ๐Ÿ“‚ processed
โ”‚   โ”‚   โ”‚-- Merged_Pune_Dark_Store_Data.csv
โ”‚   โ”‚   โ”‚-- Pune_Climate_Delivery_Impact.csv
โ”‚   โ”‚   โ”‚-- Pune_Neighborhood_Population_Analysis.csv
โ”‚   โ”‚   โ”‚-- Pune_Online_Activity_Prediction.csv
โ”‚   โ”‚   โ”‚-- pune_dark_stores.csv
โ”‚   โ”‚  
โ”‚   โ”‚-- ๐Ÿ“‚ raw
โ”‚   โ”‚   โ”‚-- Pune_Raw_Climate_Data.csv
โ”‚   โ”‚   โ”‚-- Pune_Raw_Online_Activity_Data.csv
โ”‚   โ”‚   โ”‚-- Pune_Raw_Population_Data.csv
โ”‚   โ”‚   โ”‚-- pune-ward-wise-census-2011.csv  
โ”‚  
โ”‚-- ๐Ÿ“‚ notebooks  
โ”‚   โ”‚-- Clean_Climate.ipynb  # Cleans climate data  
โ”‚   โ”‚-- DataCleaner.ipynb  # Processes raw data  
โ”‚  
โ”‚-- ๐Ÿ“‚ app  
โ”‚   โ”‚-- app.py  # Streamlit app  
โ”‚   โ”‚-- model.py  # Machine Learning model  
โ”‚  
โ”‚-- LICENSE
โ”‚-- MainScript.py
โ”‚-- README.md
โ”‚-- index.html  # GitHub Pages support  
โ”‚-- requirements.txt

๐ŸŽฏ **Key Features **

๐Ÿ“Š Data Insights & Visualization

  • Population & order volume trends per neighborhood
  • Bar charts, scatter plots & interactive graphs

๐Ÿ† Top 6 Neighborhood Recommendations

  • Find the best locations for opening Dark Stores
  • See order volume projections

๐Ÿšฆ High-Demand Locations (Requiring 2 Stores)

  • Identifies areas where 1 store isn't enough
  • Helps optimize store placement

๐Ÿ“ˆ Machine Learning Demand Prediction

  • Forecasts future demand trends
  • Improves decision-making for dark store expansion

๐Ÿ—บ๏ธ Interactive Dark Store Map

  • View existing & recommended store locations
  • Zoom in for neighborhood-level analysis

๐Ÿ” Machine Learning Model

๐Ÿ“Œ Algorithm Used: Linear Regression
๐Ÿ“Œ Evaluation Metrics:

  • Mean Absolute Error (MAE): Measures prediction accuracy.
  • Root Mean Squared Error (RMSE): Checks for large deviations.

๐Ÿ”ฎ Future Improvements

๐Ÿ’ก Better ML Models: Try XGBoost, Random Forest for higher accuracy.
๐ŸŒ Live Data Feeds: Integrate real-time order tracking & traffic analysis.
๐Ÿ“Š Competitor Heatmaps: Identify areas with less competition for strategic placement.


๐Ÿค Contribution

Contributions are welcome!
Feel free to fork this repo, suggest improvements or submit a pull request.


๐Ÿ“œ License

This project is licensed under the MIT License โ€“ feel free to use, modify and distribute it.
See the LICENSE file for full details.


โญ Like This Project? Give It a Star! โญ

If you found this useful, consider giving it a star โญ on GitHub!


About

A hackathon project analyzing the feasibility of setting up dark stores using data-driven insights. Focuses on demand clustering, location intelligence and logistics optimization.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •