Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2,947 changes: 917 additions & 2,030 deletions .github/patches/opentelemetry-java-instrumentation.patch

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -1798,8 +1798,8 @@ protected void doTestBedrockAgentDataSourceId() {
0.0);
}

protected void doTestBedrockRuntimeModelId() {
var response = appClient.get("/bedrockruntime/invokeModel").aggregate().join();
protected void doTestBedrockRuntimeAi21Jamba() {
var response = appClient.get("/bedrockruntime/invokeModel/ai21Jamba").aggregate().join();
var traces = mockCollectorClient.getTraces();
var metrics =
mockCollectorClient.getMetrics(
Expand All @@ -1809,9 +1809,9 @@ protected void doTestBedrockRuntimeModelId() {
AppSignalsConstants.LATENCY_METRIC));

var localService = getApplicationOtelServiceName();
var localOperation = "GET /bedrockruntime/invokeModel";
var localOperation = "GET /bedrockruntime/invokeModel/ai21Jamba";
String type = "AWS::Bedrock::Model";
String identifier = "anthropic.claude-v2";
String identifier = "ai21.jamba-1-5-mini-v1:0";
assertSpanClientAttributes(
traces,
bedrockRuntimeSpanName("InvokeModel"),
Expand All @@ -1828,7 +1828,371 @@ protected void doTestBedrockRuntimeModelId() {
200,
List.of(
assertAttribute(
SemanticConventionsConstants.GEN_AI_REQUEST_MODEL, "anthropic.claude-v2")));
SemanticConventionsConstants.GEN_AI_REQUEST_MODEL, "ai21.jamba-1-5-mini-v1:0"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TEMPERATURE, "0.7"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TOP_P, "0.8"),
assertAttribute(SemanticConventionsConstants.GEN_AI_RESPONSE_FINISH_REASONS, "[stop]"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_INPUT_TOKENS, "5"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_OUTPUT_TOKENS, "42")));
assertMetricClientAttributes(
metrics,
AppSignalsConstants.LATENCY_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
5000.0);
assertMetricClientAttributes(
metrics,
AppSignalsConstants.FAULT_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
0.0);
assertMetricClientAttributes(
metrics,
AppSignalsConstants.ERROR_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
0.0);
}

protected void doTestBedrockRuntimeAmazonTitan() {
var response = appClient.get("/bedrockruntime/invokeModel/amazonTitan").aggregate().join();
var traces = mockCollectorClient.getTraces();
var metrics =
mockCollectorClient.getMetrics(
Set.of(
AppSignalsConstants.ERROR_METRIC,
AppSignalsConstants.FAULT_METRIC,
AppSignalsConstants.LATENCY_METRIC));

var localService = getApplicationOtelServiceName();
var localOperation = "GET /bedrockruntime/invokeModel/amazonTitan";
String type = "AWS::Bedrock::Model";
String identifier = "amazon.titan-text-premier-v1:0";
assertSpanClientAttributes(
traces,
bedrockRuntimeSpanName("InvokeModel"),
getBedrockRuntimeRpcServiceName(),
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
"bedrock.test",
8080,
"http://bedrock.test:8080",
200,
List.of(
assertAttribute(
SemanticConventionsConstants.GEN_AI_REQUEST_MODEL,
"amazon.titan-text-premier-v1:0"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_MAX_TOKENS, "100"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TEMPERATURE, "0.7"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TOP_P, "0.9"),
assertAttribute(
SemanticConventionsConstants.GEN_AI_RESPONSE_FINISH_REASONS, "[FINISHED]"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_INPUT_TOKENS, "10"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_OUTPUT_TOKENS, "15")));
assertMetricClientAttributes(
metrics,
AppSignalsConstants.LATENCY_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
5000.0);
assertMetricClientAttributes(
metrics,
AppSignalsConstants.FAULT_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
0.0);
assertMetricClientAttributes(
metrics,
AppSignalsConstants.ERROR_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
0.0);
}

protected void doTestBedrockRuntimeAnthropicClaude() {
var response = appClient.get("/bedrockruntime/invokeModel/anthropicClaude").aggregate().join();

var traces = mockCollectorClient.getTraces();
var metrics =
mockCollectorClient.getMetrics(
Set.of(
AppSignalsConstants.ERROR_METRIC,
AppSignalsConstants.FAULT_METRIC,
AppSignalsConstants.LATENCY_METRIC));

var localService = getApplicationOtelServiceName();
var localOperation = "GET /bedrockruntime/invokeModel/anthropicClaude";
String type = "AWS::Bedrock::Model";
String identifier = "anthropic.claude-3-haiku-20240307-v1:0";

assertSpanClientAttributes(
traces,
bedrockRuntimeSpanName("InvokeModel"),
getBedrockRuntimeRpcServiceName(),
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
"bedrock.test",
8080,
"http://bedrock.test:8080",
200,
List.of(
assertAttribute(
SemanticConventionsConstants.GEN_AI_REQUEST_MODEL,
"anthropic.claude-3-haiku-20240307-v1:0"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_MAX_TOKENS, "512"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TEMPERATURE, "0.6"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TOP_P, "0.53"),
assertAttribute(
SemanticConventionsConstants.GEN_AI_RESPONSE_FINISH_REASONS, "[end_turn]"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_INPUT_TOKENS, "2095"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_OUTPUT_TOKENS, "503")));
assertMetricClientAttributes(
metrics,
AppSignalsConstants.LATENCY_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
5000.0);
assertMetricClientAttributes(
metrics,
AppSignalsConstants.FAULT_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
0.0);
assertMetricClientAttributes(
metrics,
AppSignalsConstants.ERROR_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
0.0);
}

protected void doTestBedrockRuntimeCohereCommandR() {
var response = appClient.get("/bedrockruntime/invokeModel/cohereCommandR").aggregate().join();

var traces = mockCollectorClient.getTraces();
var metrics =
mockCollectorClient.getMetrics(
Set.of(
AppSignalsConstants.ERROR_METRIC,
AppSignalsConstants.FAULT_METRIC,
AppSignalsConstants.LATENCY_METRIC));

var localService = getApplicationOtelServiceName();
var localOperation = "GET /bedrockruntime/invokeModel/cohereCommandR";
String type = "AWS::Bedrock::Model";
String identifier = "cohere.command-r-v1:0";

assertSpanClientAttributes(
traces,
bedrockRuntimeSpanName("InvokeModel"),
getBedrockRuntimeRpcServiceName(),
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
"bedrock.test",
8080,
"http://bedrock.test:8080",
200,
List.of(
assertAttribute(
SemanticConventionsConstants.GEN_AI_REQUEST_MODEL, "cohere.command-r-v1:0"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_MAX_TOKENS, "4096"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TEMPERATURE, "0.8"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TOP_P, "0.45"),
assertAttribute(
SemanticConventionsConstants.GEN_AI_RESPONSE_FINISH_REASONS, "[COMPLETE]"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_INPUT_TOKENS, "9"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_OUTPUT_TOKENS, "16")));
assertMetricClientAttributes(
metrics,
AppSignalsConstants.LATENCY_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
5000.0);
assertMetricClientAttributes(
metrics,
AppSignalsConstants.FAULT_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
0.0);
assertMetricClientAttributes(
metrics,
AppSignalsConstants.ERROR_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
0.0);
}

protected void doTestBedrockRuntimeMetaLlama() {
var response = appClient.get("/bedrockruntime/invokeModel/metaLlama").aggregate().join();

var traces = mockCollectorClient.getTraces();
var metrics =
mockCollectorClient.getMetrics(
Set.of(
AppSignalsConstants.ERROR_METRIC,
AppSignalsConstants.FAULT_METRIC,
AppSignalsConstants.LATENCY_METRIC));

var localService = getApplicationOtelServiceName();
var localOperation = "GET /bedrockruntime/invokeModel/metaLlama";
String type = "AWS::Bedrock::Model";
String identifier = "meta.llama3-70b-instruct-v1:0";

assertSpanClientAttributes(
traces,
bedrockRuntimeSpanName("InvokeModel"),
getBedrockRuntimeRpcServiceName(),
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
"bedrock.test",
8080,
"http://bedrock.test:8080",
200,
List.of(
assertAttribute(
SemanticConventionsConstants.GEN_AI_REQUEST_MODEL, "meta.llama3-70b-instruct-v1:0"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_MAX_TOKENS, "128"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TEMPERATURE, "0.1"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TOP_P, "0.9"),
assertAttribute(SemanticConventionsConstants.GEN_AI_RESPONSE_FINISH_REASONS, "[stop]"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_INPUT_TOKENS, "2095"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_OUTPUT_TOKENS, "503")));
assertMetricClientAttributes(
metrics,
AppSignalsConstants.LATENCY_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
5000.0);
assertMetricClientAttributes(
metrics,
AppSignalsConstants.FAULT_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
0.0);
assertMetricClientAttributes(
metrics,
AppSignalsConstants.ERROR_METRIC,
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
0.0);
}

protected void doTestBedrockRuntimeMistral() {
var response = appClient.get("/bedrockruntime/invokeModel/mistralAi").aggregate().join();

var traces = mockCollectorClient.getTraces();
var metrics =
mockCollectorClient.getMetrics(
Set.of(
AppSignalsConstants.ERROR_METRIC,
AppSignalsConstants.FAULT_METRIC,
AppSignalsConstants.LATENCY_METRIC));

var localService = getApplicationOtelServiceName();
var localOperation = "GET /bedrockruntime/invokeModel/mistralAi";
String type = "AWS::Bedrock::Model";
String identifier = "mistral.mistral-large-2402-v1:0";

assertSpanClientAttributes(
traces,
bedrockRuntimeSpanName("InvokeModel"),
getBedrockRuntimeRpcServiceName(),
localService,
localOperation,
getBedrockRuntimeServiceName(),
"InvokeModel",
type,
identifier,
"bedrock.test",
8080,
"http://bedrock.test:8080",
200,
List.of(
assertAttribute(
SemanticConventionsConstants.GEN_AI_REQUEST_MODEL,
"mistral.mistral-large-2402-v1:0"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_MAX_TOKENS, "4096"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TEMPERATURE, "0.75"),
assertAttribute(SemanticConventionsConstants.GEN_AI_REQUEST_TOP_P, "0.25"),
assertAttribute(SemanticConventionsConstants.GEN_AI_RESPONSE_FINISH_REASONS, "[stop]"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_INPUT_TOKENS, "15"),
assertAttribute(SemanticConventionsConstants.GEN_AI_USAGE_OUTPUT_TOKENS, "24")));
assertMetricClientAttributes(
metrics,
AppSignalsConstants.LATENCY_METRIC,
Expand Down
Loading
Loading