@@ -18,7 +18,7 @@ Table of Contents
18185. `SageMaker Scikit-learn Model Server <#sagemaker-scikit-learn-model-server >`__
19196. `Working with Existing Model Data and Training Jobs <#working-with-existing-model-data-and-training-jobs >`__
20207. `Scikit-learn Training Examples <#scikit-learn-training-examples >`__
21- 8. `SageMaker PyTorch Docker Containers <#sagemaker-pytorch -docker-containers >`__
21+ 8. `SageMaker Scikit-learn Docker Containers <#sagemaker-scikit-learn -docker-containers >`__
2222
2323
2424Training with Scikit-learn
@@ -62,7 +62,6 @@ can access useful properties about the training environment through various envi
6262
6363* ``SM_MODEL_DIR ``: A string representing the path to the directory to write model artifacts to.
6464 These artifacts are uploaded to S3 for model hosting.
65- * ``SM_NUM_GPUS ``: An integer representing the number of GPUs available to the host.
6665* ``SM_OUTPUT_DATA_DIR ``: A string representing the filesystem path to write output artifacts to. Output artifacts may
6766 include checkpoints, graphs, and other files to save, not including model artifacts. These artifacts are compressed
6867 and uploaded to S3 to the same S3 prefix as the model artifacts.
@@ -109,7 +108,7 @@ inadvertently run your training code at the wrong point in execution.
109108For more on training environment variables, please visit https://github.com/aws/sagemaker-containers.
110109
111110Running a Scikit-learn training script in SageMaker
112- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
111+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
113112
114113You run Scikit-learn training scripts on SageMaker by creating ``SKLearn `` Estimators.
115114SageMaker training of your script is invoked when you call ``fit `` on a ``SKLearn `` Estimator.
@@ -188,7 +187,7 @@ The following are optional arguments. When you create a ``SKLearn`` object, you
188187 serving. If specified, the estimator will use this image for training and
189188 hosting, instead of selecting the appropriate SageMaker official image based on
190189 framework_version and py_version. Refer to: `SageMaker Scikit-learn Docker Containers
191- <#sagemaker-sklearn- docker-containers> `_ for details on what the Official images support
190+ <#sagemaker-scikit-learn- docker-containers> `_ for details on what the official images support
192191 and where to find the source code to build your custom image.
193192
194193
@@ -292,7 +291,7 @@ You can access the name of the Endpoint by the ``name`` property on the returned
292291
293292
294293SageMaker Scikit-learn Model Server
295- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
294+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
296295
297296The Scikit-learn Endpoint you create with ``deploy `` runs a SageMaker Scikit-learn model server.
298297The model server loads the model that was saved by your training script and performs inference on the model in response
@@ -605,7 +604,7 @@ https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-pytho
605604These are also available in SageMaker Notebook Instance hosted Jupyter notebooks under the "sample notebooks" folder.
606605
607606
608- SageMaker Scikit-learn Docker containers
607+ SageMaker Scikit-learn Docker Containers
609608~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
610609
611610When training and deploying training scripts, SageMaker runs your Python script in a Docker container with several
@@ -629,7 +628,7 @@ The Scikit-learn Docker images have the following dependencies installed:
629628| sagemaker-containers | 2.2.4 |
630629+-----------------------------+-------------+
631630| numpy | 1.15.2 |
632- +------------------------------ -------------+
631+ +-----------------------------+ -------------+
633632| pandas | 0.23.4 |
634633+-----------------------------+-------------+
635634| Pillow | 3.1.2 |
@@ -649,4 +648,4 @@ version.
649648Alternatively, you can build your own image by following the instructions in the SageMaker Scikit-learn containers
650649repository, and passing ``image_name `` to the Scikit-learn Estimator constructor.
651650sagemaker-containers
652- You can visit the SageMaker Scikit-learn containers repository here: https://github.com/aws/sagemaker-sklearn-containers /
651+ You can visit the SageMaker Scikit-learn containers repository here: https://github.com/aws/sagemaker-scikit-learn-container /
0 commit comments