Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 13 additions & 1 deletion src/sagemaker/pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
)
from sagemaker.drift_check_baselines import DriftCheckBaselines
from sagemaker.metadata_properties import MetadataProperties
from sagemaker.model import ModelPackage
from sagemaker.model_card import (
ModelCard,
ModelPackageModelCard,
Expand Down Expand Up @@ -470,7 +471,18 @@ def register(
model_card=model_card,
)

self.sagemaker_session.create_model_package_from_containers(**model_pkg_args)
model_package = self.sagemaker_session.create_model_package_from_containers(
**model_pkg_args
)

if model_package is not None and "ModelPackageArn" in model_package:
return ModelPackage(
role=self.role,
model_package_arn=model_package.get("ModelPackageArn"),
sagemaker_session=self.sagemaker_session,
predictor_cls=self.predictor_cls,
)
return None

def transformer(
self,
Expand Down
34 changes: 34 additions & 0 deletions tests/integ/test_inference_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,6 +150,40 @@ def test_inference_pipeline_model_deploy(sagemaker_session, cpu_instance_type):
assert "Could not find model" in str(exception.value)


@pytest.mark.release
def test_inference_pipeline_model_register(sagemaker_session):
sparkml_data_path = os.path.join(DATA_DIR, "sparkml_model")
endpoint_name = unique_name_from_base("test-inference-pipeline-deploy")
sparkml_model_data = sagemaker_session.upload_data(
path=os.path.join(sparkml_data_path, "mleap_model.tar.gz"),
key_prefix="integ-test-data/sparkml/model",
)

sparkml_model = SparkMLModel(
model_data=sparkml_model_data,
env={"SAGEMAKER_SPARKML_SCHEMA": SCHEMA},
sagemaker_session=sagemaker_session,
)

model = PipelineModel(
models=[sparkml_model],
role="SageMakerRole",
sagemaker_session=sagemaker_session,
name=endpoint_name,
)
model_package_group_name = unique_name_from_base("pipeline-model-package")
model_package = model.register(model_package_group_name=model_package_group_name)
assert model_package.model_package_arn is not None

sagemaker_session.sagemaker_client.delete_model_package(
ModelPackageName=model_package.model_package_arn
)

sagemaker_session.sagemaker_client.delete_model_package_group(
ModelPackageGroupName=model_package_group_name
)


@pytest.mark.slow_test
@pytest.mark.flaky(reruns=5, reruns_delay=2)
def test_inference_pipeline_model_deploy_and_update_endpoint(
Expand Down
24 changes: 24 additions & 0 deletions tests/unit/test_pipeline_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -420,3 +420,27 @@ def test_network_isolation(tfo, time, sagemaker_session):
vpc_config=None,
enable_network_isolation=True,
)


def test_pipeline_model_register(sagemaker_session):
sagemaker_session.create_model_package_from_containers = Mock(
name="create_model_package_from_containers",
return_value={
"ModelPackageArn": "arn:aws:sagemaker:us-west-2:123456789123:model-package/unit-test-package-version/1"
},
)
framework_model = DummyFrameworkModel(sagemaker_session)
sparkml_model = SparkMLModel(
model_data=MODEL_DATA_2, role=ROLE, sagemaker_session=sagemaker_session
)
model = PipelineModel(
models=[framework_model, sparkml_model],
role=ROLE,
sagemaker_session=sagemaker_session,
enable_network_isolation=True,
)
model_package = model.register()
assert (
model_package.model_package_arn
== "arn:aws:sagemaker:us-west-2:123456789123:model-package/unit-test-package-version/1"
)