Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions sdk/ai/azure-ai-projects/_meta.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{
"commit": "4ec5f518e271dd69523ace2e83ecfe7bb8113d9c",
"repository_url": "https://github.com/Azure/azure-rest-api-specs",
"typespec_src": "specification/ai/Azure.AI.Projects",
"@azure-tools/typespec-python": "0.37.0"
}
4 changes: 2 additions & 2 deletions sdk/ai/azure-ai-projects/azure/ai/projects/_client.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ class AIProjectClient:
:vartype telemetry: azure.ai.projects.operations.TelemetryOperations
:ivar evaluations: EvaluationsOperations operations
:vartype evaluations: azure.ai.projects.operations.EvaluationsOperations
:param endpoint: The Azure AI Studio project endpoint, in the form
:param endpoint: The Azure AI Foundry project endpoint, in the form
``https://<azure-region>.api.azureml.ms`` or
``https://<private-link-guid>.<azure-region>.api.azureml.ms``\\\\ , where
:code:`<azure-region>` is the Azure region where the project is deployed (e.g. westus) and
Expand All @@ -43,7 +43,7 @@ class AIProjectClient:
:type subscription_id: str
:param resource_group_name: The name of the Azure Resource Group. Required.
:type resource_group_name: str
:param project_name: The Azure AI Studio project name. Required.
:param project_name: The Azure AI Foundry project name. Required.
:type project_name: str
:param credential: Credential used to authenticate requests to the service. Required.
:type credential: ~azure.core.credentials.TokenCredential
Expand Down
4 changes: 2 additions & 2 deletions sdk/ai/azure-ai-projects/azure/ai/projects/_configuration.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ class AIProjectClientConfiguration: # pylint: disable=too-many-instance-attribu
Note that all parameters used to create this instance are saved as instance
attributes.

:param endpoint: The Azure AI Studio project endpoint, in the form
:param endpoint: The Azure AI Foundry project endpoint, in the form
``https://<azure-region>.api.azureml.ms`` or
``https://<private-link-guid>.<azure-region>.api.azureml.ms``\\ , where :code:`<azure-region>`
is the Azure region where the project is deployed (e.g. westus) and :code:`<private-link-guid>`
Expand All @@ -32,7 +32,7 @@ class AIProjectClientConfiguration: # pylint: disable=too-many-instance-attribu
:type subscription_id: str
:param resource_group_name: The name of the Azure Resource Group. Required.
:type resource_group_name: str
:param project_name: The Azure AI Studio project name. Required.
:param project_name: The Azure AI Foundry project name. Required.
:type project_name: str
:param credential: Credential used to authenticate requests to the service. Required.
:type credential: ~azure.core.credentials.TokenCredential
Expand Down
18 changes: 17 additions & 1 deletion sdk/ai/azure-ai-projects/azure/ai/projects/_model_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -754,7 +754,7 @@ def _get_deserialize_callable_from_annotation( # pylint: disable=too-many-retur
except AttributeError:
model_name = annotation
if module is not None:
annotation = _get_model(module, model_name)
annotation = _get_model(module, model_name) # type: ignore

try:
if module and _is_model(annotation):
Expand Down Expand Up @@ -894,6 +894,22 @@ def _deserialize(
return _deserialize_with_callable(deserializer, value)


def _failsafe_deserialize(
deserializer: typing.Any,
value: typing.Any,
module: typing.Optional[str] = None,
rf: typing.Optional["_RestField"] = None,
format: typing.Optional[str] = None,
) -> typing.Any:
try:
return _deserialize(deserializer, value, module, rf, format)
except DeserializationError:
_LOGGER.warning(
"Ran into a deserialization error. Ignoring since this is failsafe deserialization", exc_info=True
)
return None


class _RestField:
def __init__(
self,
Expand Down
287 changes: 2 additions & 285 deletions sdk/ai/azure-ai-projects/azure/ai/projects/_patch.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,292 +6,9 @@

Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
"""
import uuid
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union
from typing_extensions import Self
from typing import List

from azure.core import PipelineClient
from azure.core.credentials import TokenCredential
from azure.core.pipeline import policies

from ._client import AIProjectClient as ClientGenerated
from ._configuration import AIProjectClientConfiguration
from ._serialization import Deserializer, Serializer
from .operations import AgentsOperations, ConnectionsOperations, EvaluationsOperations, TelemetryOperations
from .operations._patch import InferenceOperations


class AIProjectClient(
ClientGenerated
): # pylint: disable=client-accepts-api-version-keyword,too-many-instance-attributes
def __init__( # pylint: disable=super-init-not-called,too-many-statements
self,
endpoint: str,
subscription_id: str,
resource_group_name: str,
project_name: str,
credential: "TokenCredential",
**kwargs: Any,
) -> None:
# TODO: Validate input formats with regex match (e.g. subscription ID)
if not endpoint:
raise ValueError("endpoint is required")
if not subscription_id:
raise ValueError("subscription_id ID is required")
if not resource_group_name:
raise ValueError("resource_group_name is required")
if not project_name:
raise ValueError("project_name is required")
if not credential:
raise ValueError("credential is required")
if "api_version" in kwargs:
raise ValueError("No support for overriding the API version")
if "credential_scopes" in kwargs:
raise ValueError("No support for overriding the credential scopes")

kwargs0 = kwargs.copy()
kwargs1 = kwargs.copy()
kwargs2 = kwargs.copy()
kwargs3 = kwargs.copy()

# For getting AppInsights connection string from the AppInsights resource.
# The AppInsights resource URL is not known at this point. We need to get it from the
# AzureML "Workspace - Get" REST API call. It will have the form:
# https://management.azure.com/subscriptions/{appinsights_subscription_id}/resourceGroups/{appinsights_resource_group_name}/providers/microsoft.insights/components/{appinsights_resource_name}
_endpoint0 = "https://management.azure.com"
self._config0: AIProjectClientConfiguration = AIProjectClientConfiguration(
endpoint=endpoint,
subscription_id=subscription_id,
resource_group_name=resource_group_name,
project_name=project_name,
credential=credential,
api_version="2020-02-02",
credential_scopes=["https://management.azure.com/.default"],
**kwargs0,
)

_policies0 = kwargs0.pop("policies", None)
if _policies0 is None:
_policies0 = [
policies.RequestIdPolicy(**kwargs0),
self._config0.headers_policy,
self._config0.user_agent_policy,
self._config0.proxy_policy,
policies.ContentDecodePolicy(**kwargs0),
self._config0.redirect_policy,
self._config0.retry_policy,
self._config0.authentication_policy,
self._config0.custom_hook_policy,
self._config0.logging_policy,
policies.DistributedTracingPolicy(**kwargs0),
policies.SensitiveHeaderCleanupPolicy(**kwargs0) if self._config0.redirect_policy else None,
self._config0.http_logging_policy,
]
self._client0: PipelineClient = PipelineClient(base_url=_endpoint0, policies=_policies0, **kwargs0)

# For Endpoints operations (listing connections, getting connection properties, getting project properties)
_endpoint1 = (
"https://management.azure.com/"
+ f"subscriptions/{subscription_id}/"
+ f"resourceGroups/{resource_group_name}/"
+ "providers/Microsoft.MachineLearningServices/"
+ f"workspaces/{project_name}"
)
self._config1: AIProjectClientConfiguration = AIProjectClientConfiguration(
endpoint=endpoint,
subscription_id=subscription_id,
resource_group_name=resource_group_name,
project_name=project_name,
credential=credential,
api_version="2024-07-01-preview",
credential_scopes=["https://management.azure.com/.default"],
**kwargs1,
)
_policies1 = kwargs1.pop("policies", None)
if _policies1 is None:
_policies1 = [
policies.RequestIdPolicy(**kwargs1),
self._config1.headers_policy,
self._config1.user_agent_policy,
self._config1.proxy_policy,
policies.ContentDecodePolicy(**kwargs1),
self._config1.redirect_policy,
self._config1.retry_policy,
self._config1.authentication_policy,
self._config1.custom_hook_policy,
self._config1.logging_policy,
policies.DistributedTracingPolicy(**kwargs1),
policies.SensitiveHeaderCleanupPolicy(**kwargs1) if self._config1.redirect_policy else None,
self._config1.http_logging_policy,
]
self._client1: PipelineClient = PipelineClient(base_url=_endpoint1, policies=_policies1, **kwargs1)

# For Agents operations
_endpoint2 = f"{endpoint}/agents/v1.0/subscriptions/{subscription_id}/resourceGroups/{resource_group_name}/providers/Microsoft.MachineLearningServices/workspaces/{project_name}" # pylint: disable=line-too-long
self._config2 = AIProjectClientConfiguration(
endpoint=endpoint,
subscription_id=subscription_id,
resource_group_name=resource_group_name,
project_name=project_name,
credential=credential,
api_version="2024-07-01-preview", # TODO: Update me
credential_scopes=["https://ml.azure.com/.default"],
**kwargs2,
)
_policies2 = kwargs2.pop("policies", None)
if _policies2 is None:
_policies2 = [
policies.RequestIdPolicy(**kwargs2),
self._config2.headers_policy,
self._config2.user_agent_policy,
self._config2.proxy_policy,
policies.ContentDecodePolicy(**kwargs2),
self._config2.redirect_policy,
self._config2.retry_policy,
self._config2.authentication_policy,
self._config2.custom_hook_policy,
self._config2.logging_policy,
policies.DistributedTracingPolicy(**kwargs2),
policies.SensitiveHeaderCleanupPolicy(**kwargs2) if self._config2.redirect_policy else None,
self._config2.http_logging_policy,
]
self._client2: PipelineClient = PipelineClient(base_url=_endpoint2, policies=_policies2, **kwargs2)

# For Cloud Evaluations operations
# cSpell:disable-next-line
_endpoint3 = f"{endpoint}/raisvc/v1.0/subscriptions/{subscription_id}/resourceGroups/{resource_group_name}/providers/Microsoft.MachineLearningServices/workspaces/{project_name}" # pylint: disable=line-too-long
self._config3 = AIProjectClientConfiguration(
endpoint=endpoint,
subscription_id=subscription_id,
resource_group_name=resource_group_name,
project_name=project_name,
credential=credential,
api_version="2024-07-01-preview", # TODO: Update me
credential_scopes=["https://ml.azure.com/.default"], # TODO: Update once service changes are ready
**kwargs3,
)
_policies3 = kwargs3.pop("policies", None)
if _policies3 is None:
_policies3 = [
policies.RequestIdPolicy(**kwargs3),
self._config3.headers_policy,
self._config3.user_agent_policy,
self._config3.proxy_policy,
policies.ContentDecodePolicy(**kwargs3),
self._config3.redirect_policy,
self._config3.retry_policy,
self._config3.authentication_policy,
self._config3.custom_hook_policy,
self._config3.logging_policy,
policies.DistributedTracingPolicy(**kwargs3),
policies.SensitiveHeaderCleanupPolicy(**kwargs3) if self._config3.redirect_policy else None,
self._config3.http_logging_policy,
]
self._client3: PipelineClient = PipelineClient(base_url=_endpoint3, policies=_policies3, **kwargs3)

self._serialize = Serializer()
self._deserialize = Deserializer()
self._serialize.client_side_validation = False

self.telemetry = TelemetryOperations(
self._client0, self._config0, self._serialize, self._deserialize, outer_instance=self
)
self.connections = ConnectionsOperations(self._client1, self._config1, self._serialize, self._deserialize)
self.agents = AgentsOperations(self._client2, self._config2, self._serialize, self._deserialize)
self.evaluations = EvaluationsOperations(self._client3, self._config3, self._serialize, self._deserialize)
self.inference = InferenceOperations(self)

def close(self) -> None:
self._client0.close()
self._client1.close()
self._client2.close()
self._client3.close()

def __enter__(self) -> Self:
self._client0.__enter__()
self._client1.__enter__()
self._client2.__enter__()
self._client3.__enter__()
return self

def __exit__(self, *exc_details: Any) -> None:
self._client0.__exit__(*exc_details)
self._client1.__exit__(*exc_details)
self._client2.__exit__(*exc_details)
self._client3.__exit__(*exc_details)

@classmethod
def from_connection_string(cls, conn_str: str, credential: "TokenCredential", **kwargs) -> Self:
"""
Create an AIProjectClient from a connection string.

:param str conn_str: The connection string, copied from your AI Studio project.
:param TokenCredential credential: Credential used to authenticate requests to the service.
:return: An AIProjectClient instance.
:rtype: AIProjectClient
"""
if not conn_str:
raise ValueError("Connection string is required")
parts = conn_str.split(";")
if len(parts) != 4:
raise ValueError("Invalid connection string format")
endpoint = "https://" + parts[0]
subscription_id = parts[1]
resource_group_name = parts[2]
project_name = parts[3]
return cls(endpoint, subscription_id, resource_group_name, project_name, credential, **kwargs)

def upload_file(self, file_path: Union[Path, str, PathLike]) -> Tuple[str, str]:
"""Upload a file to the Azure AI Studio project.
This method required *azure-ai-ml* to be installed.

:param file_path: The path to the file to upload.
:type file_path: Union[str, Path, PathLike]
:return: The tuple, containing asset id and asset URI of uploaded file.
:rtype: Tuple[str]
"""
try:
from azure.ai.ml import MLClient # type: ignore
from azure.ai.ml.constants import AssetTypes # type: ignore
from azure.ai.ml.entities import Data # type: ignore
except ImportError as e:
raise ImportError(
"azure-ai-ml must be installed to use this function. Please install it using `pip install azure-ai-ml`"
) from e

data = Data(
path=str(file_path),
type=AssetTypes.URI_FILE,
name=str(uuid.uuid4()), # generating random name
is_anonymous=True,
version="1",
)

ml_client = MLClient(
self._config3.credential,
self._config3.subscription_id,
self._config3.resource_group_name,
self._config3.project_name,
)

data_asset = ml_client.data.create_or_update(data)

return data_asset.id, data_asset.path

@property
def scope(self) -> Dict[str, str]:
return {
"subscription_id": self._config3.subscription_id,
"resource_group_name": self._config3.resource_group_name,
"project_name": self._config3.project_name,
}


__all__: List[str] = [
"AIProjectClient",
] # Add all objects you want publicly available to users at this package level
__all__: List[str] = [] # Add all objects you want publicly available to users at this package level


def patch_sdk():
Expand Down
Loading
Loading