Skip to content

Commit 1960be3

Browse files
committed
2 parents 1137b21 + e91e942 commit 1960be3

File tree

1 file changed

+55
-9
lines changed

1 file changed

+55
-9
lines changed

README.md

Lines changed: 55 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -141,18 +141,17 @@ model parameters as a result of conditioning on the data.
141141

142142
- Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020).
143143
BayesFlow: Learning complex stochastic models with invertible neural networks.
144-
<em>IEEE Transactions on Neural Networks and Learning Systems</em>, available
145-
for free at: https://arxiv.org/abs/2003.06281.
144+
<em>IEEE Transactions on Neural Networks and Learning Systems, 33(4)</em>, 1452-1466.
146145

147146
- Radev, S. T., Graw, F., Chen, S., Mutters, N. T., Eichel, V. M., Bärnighausen, T., & Köthe, U. (2021).
148-
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany. <em>PLoS computational biology</em>, 17(10), e1009472.
147+
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany. <em>PLoS computational biology, 17(10)</em>, e1009472.
149148

150149
- Bieringer, S., Butter, A., Heimel, T., Höche, S., Köthe, U., Plehn, T., & Radev, S. T. (2021).
151-
Measuring QCD splittings with invertible networks. <em>SciPost Physics</em>, 10(6), 126.
150+
Measuring QCD splittings with invertible networks. <em>SciPost Physics, 10(6)</em>, 126.
152151

153152
- von Krause, M., Radev, S. T., & Voss, A. (2022).
154153
Mental speed is high until age 60 as revealed by analysis of over a million participants.
155-
<em>Nature Human Behaviour</em>, 6(5), 700-708.
154+
<em>Nature Human Behaviour, 6(5)</em>, 700-708.
156155

157156
## Model Misspecification
158157

@@ -174,7 +173,7 @@ The amortizer knows how to combine its losses and you can inspect the summary sp
174173

175174
### References and Further Reading
176175

177-
- Schmitt, M., Bürkner P. C., Köthe U., & Radev S. T. (2021). Detecting Model
176+
- Schmitt, M., Bürkner P. C., Köthe U., & Radev S. T. (2022). Detecting Model
178177
Misspecification in Amortized Bayesian Inference with Neural Networks. <em>ArXiv
179178
preprint</em>, available for free at: https://arxiv.org/abs/2112.08866
180179

@@ -283,9 +282,56 @@ Learning both densities enables us to approximate marginal likelihoods or perfor
283282

284283
### References and Further Reading
285284

286-
Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P. C. (2023).
287-
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models. <em>arXiv preprint</em>,
288-
available for free at: https://arxiv.org/abs/2302.09125
285+
Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023).
286+
JANA: Jointly amortized neural approximation of complex Bayesian models.
287+
*Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 216*, 1695-1706.
288+
([arXiv](https://arxiv.org/abs/2302.09125))([PLMR](https://proceedings.mlr.press/v216/radev23a.html))
289289

290290
## Support
291291
This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -– EXC-2181 - 390900948 (the Heidelberg Cluster of Excellence STRUCTURES) and -- EXC-2075 - 390740016 (the Stuttgart Cluster of Excellence SimTech), the Informatics for Life initiative funded by the Klaus Tschira Foundation, and Google Cloud through the Academic Research Grants program.
292+
293+
## Citing BayesFlow
294+
295+
You can cite BayesFlow along the lines of:
296+
297+
- We approximated the posterior with neural posterior estimation and learned summary statistics (NPE; Radev et al., 2020), as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
298+
- We approximated the likelihood with neural likelihood estimation (NLE; Papamakarios et al., 2019), as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
299+
- We performed simultaneous posterior and likelihood estimation with jointly amortized neural approximation (JANA; Radev et al., 2023a), as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
300+
301+
1. Radev, S. T., Schmitt, M., Schumacher, L., Elsemüller, L., Pratz, V., Schälte, Y., Köthe, U., & Bürkner, P.-C. (2023). BayesFlow: Amortized Bayesian workflows with neural networks. *arXiv:2306.16015*. ([arXiv](https://arxiv.org/abs/2306.16015))
302+
2. Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., Köthe, U. (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. *IEEE Transactions on Neural Networks and Learning Systems, 33(4)*, 1452-1466. ([arXiv](https://arxiv.org/abs/2003.06281))([IEEE TNNLS](https://ieeexplore.ieee.org/document/9298920))
303+
3. Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023). JANA: Jointly amortized neural approximation of complex Bayesian models. *Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 216*, 1695-1706. ([arXiv](https://arxiv.org/abs/2302.09125))([PLMR](https://proceedings.mlr.press/v216/radev23a.html))
304+
305+
**BibTeX:**
306+
307+
```
308+
@misc{radev2023bayesflow,
309+
title = {{BayesFlow}: Amortized Bayesian workflows with neural networks},
310+
author = {Stefan T Radev and Marvin Schmitt and Lukas Schumacher and Lasse Elsem\"{u}ller and Valentin Pratz and Yannik Sch\"{a}lte and Ullrich K\"{o}the and Paul-Christian B\"{u}rkner},
311+
year = {2023},
312+
publisher= {arXiv},
313+
url={https://arxiv.org/abs/2306.16015}
314+
}
315+
316+
@article{radev2020bayesflow,
317+
title={{BayesFlow}: Learning complex stochastic models with invertible neural networks},
318+
author={Radev, Stefan T. and Mertens, Ulf K. and Voss, Andreas and Ardizzone, Lynton and K{\"o}the, Ullrich},
319+
journal={IEEE transactions on neural networks and learning systems},
320+
volume={33},
321+
number={4},
322+
pages={1452--1466},
323+
year={2020},
324+
publisher={IEEE}
325+
}
326+
327+
@inproceedings{pmlr-v216-radev23a,
328+
title = {{JANA}: Jointly amortized neural approximation of complex {B}ayesian models},
329+
author = {Radev, Stefan T. and Schmitt, Marvin and Pratz, Valentin and Picchini, Umberto and K\"othe, Ullrich and B\"urkner, Paul-Christian},
330+
booktitle = {Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence},
331+
pages = {1695--1706},
332+
year = {2023},
333+
volume = {216},
334+
series = {Proceedings of Machine Learning Research},
335+
publisher = {PMLR}
336+
}
337+
```

0 commit comments

Comments
 (0)