Skip to content

Commit eac9aaf

Browse files
committed
minor fixes
1 parent e983cf7 commit eac9aaf

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

bayesflow/networks/diffusion_model/diffusion_model.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -734,13 +734,13 @@ def compositional_score(
734734
individual_scores = self._compute_individual_scores(xz, log_snr_t, alpha_t, sigma_t, conditions_batch, training)
735735

736736
# Compute prior score component
737-
weighted_prior_score = (1.0 - time) * compute_prior_score(xz)
737+
prior_score = compute_prior_score(xz)
738+
weighted_prior_score = (1.0 - n_compositional) * (1.0 - time) * prior_score
738739

739-
# Combine scores using compositional formula, mean over individual scores and scale with n to get sum
740-
weighted_individual_scores = individual_scores - keras.ops.expand_dims(weighted_prior_score, axis=1)
741-
summed_individual_scores = n_compositional * ops.mean(weighted_individual_scores, axis=1)
740+
# Sum individual scores across compositional dimensiont
741+
summed_individual_scores = n_compositional * ops.mean(individual_scores, axis=1)
742742

743-
# Combined score
743+
# Combined score using compositional formula: (1-n)(1-t)∇log p(θ) + Σᵢ₌₁ⁿ s_ψ(θ,t,yᵢ)
744744
time_tensor = ops.cast(time, dtype=ops.dtype(xz))
745745
compositional_score = self.compositional_bridge(time_tensor) * (weighted_prior_score + summed_individual_scores)
746746
return compositional_score

0 commit comments

Comments
 (0)