|
| 1 | +import numpy as np |
| 2 | +from bayes_opt import BayesianOptimization, acquisition |
| 3 | +from sklearn.ensemble import GradientBoostingClassifier |
| 4 | +from sklearn.datasets import load_digits |
| 5 | +from sklearn.model_selection import KFold |
| 6 | +from sklearn.metrics import log_loss |
| 7 | +import matplotlib.pyplot as plt |
| 8 | +from tqdm import tqdm |
| 9 | + |
| 10 | +N_FOLDS = 10 |
| 11 | +N_START = 2 |
| 12 | +N_ITER = 25 - N_START |
| 13 | +# Load data |
| 14 | +data = load_digits() |
| 15 | + |
| 16 | + |
| 17 | +# Define the hyperparameter space |
| 18 | +continuous_pbounds = { |
| 19 | + 'log_learning_rate': (-10, 0), |
| 20 | + 'max_depth': (1, 6), |
| 21 | + 'min_samples_split': (2, 6) |
| 22 | +} |
| 23 | + |
| 24 | +discrete_pbounds = { |
| 25 | + 'log_learning_rate': (-10, 0), |
| 26 | + 'max_depth': (1, 6, int), |
| 27 | + 'min_samples_split': (2, 6, int) |
| 28 | +} |
| 29 | + |
| 30 | +kfold = KFold(n_splits=N_FOLDS, shuffle=True, random_state=42) |
| 31 | + |
| 32 | +res_continuous = [] |
| 33 | +res_discrete = [] |
| 34 | + |
| 35 | +METRIC_SIGN = -1 |
| 36 | + |
| 37 | +for i, (train_idx, test_idx) in enumerate(tqdm(kfold.split(data.data), total=N_FOLDS)): |
| 38 | + def gboost(log_learning_rate, max_depth, min_samples_split): |
| 39 | + clf = GradientBoostingClassifier( |
| 40 | + n_estimators=10, |
| 41 | + max_depth=int(max_depth), |
| 42 | + learning_rate=np.exp(log_learning_rate), |
| 43 | + min_samples_split=int(min_samples_split), |
| 44 | + random_state=42 + i |
| 45 | + ) |
| 46 | + clf.fit(data.data[train_idx], data.target[train_idx]) |
| 47 | + #return clf.score(data.data[test_idx], data.target[test_idx]) |
| 48 | + return METRIC_SIGN * log_loss(data.target[test_idx], clf.predict_proba(data.data[test_idx]), labels=list(range(10))) |
| 49 | + |
| 50 | + continuous_optimizer = BayesianOptimization( |
| 51 | + f=gboost, |
| 52 | + acquisition_function=acquisition.ExpectedImprovement(1e-1), |
| 53 | + pbounds=continuous_pbounds, |
| 54 | + verbose=0, |
| 55 | + random_state=42, |
| 56 | + ) |
| 57 | + |
| 58 | + discrete_optimizer = BayesianOptimization( |
| 59 | + f=gboost, |
| 60 | + acquisition_function=acquisition.ExpectedImprovement(1e-1), |
| 61 | + pbounds=discrete_pbounds, |
| 62 | + verbose=0, |
| 63 | + random_state=42, |
| 64 | + ) |
| 65 | + continuous_optimizer.maximize(init_points=2, n_iter=N_ITER) |
| 66 | + discrete_optimizer.maximize(init_points=2, n_iter=N_ITER) |
| 67 | + res_continuous.append(METRIC_SIGN * continuous_optimizer.space.target) |
| 68 | + res_discrete.append(METRIC_SIGN * discrete_optimizer.space.target) |
| 69 | + |
| 70 | +score_continuous = [] |
| 71 | +score_discrete = [] |
| 72 | + |
| 73 | +for fold in range(N_FOLDS): |
| 74 | + best_in_fold = min(np.min(res_continuous[fold]), np.min(res_discrete[fold])) |
| 75 | + score_continuous.append(np.minimum.accumulate((res_continuous[fold] - best_in_fold))) |
| 76 | + score_discrete.append(np.minimum.accumulate((res_discrete[fold] - best_in_fold))) |
| 77 | + |
| 78 | +mean_continuous = np.mean(score_continuous, axis=0) |
| 79 | +quantiles_continuous = np.quantile(score_continuous, [0.1, 0.9], axis=0) |
| 80 | +mean_discrete = np.mean(score_discrete, axis=0) |
| 81 | +quantiles_discrete = np.quantile(score_discrete, [0.1, 0.9], axis=0) |
| 82 | + |
| 83 | + |
| 84 | +plt.figure(figsize=(10, 5)) |
| 85 | +plt.plot((mean_continuous), label='Continuous best seen') |
| 86 | +plt.fill_between(range(N_ITER + N_START), quantiles_continuous[0], quantiles_continuous[1], alpha=0.3) |
| 87 | +plt.plot((mean_discrete), label='Discrete best seen') |
| 88 | +plt.fill_between(range(N_ITER + N_START), quantiles_discrete[0], quantiles_discrete[1], alpha=0.3) |
| 89 | + |
| 90 | +plt.xlabel('Number of iterations') |
| 91 | +plt.ylabel('Score') |
| 92 | +plt.legend(loc='best') |
| 93 | +plt.grid() |
| 94 | +plt.savefig('discrete_vs_continuous.png') |
0 commit comments