Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion bayes_opt/acquisition.py
Original file line number Diff line number Diff line change
Expand Up @@ -362,7 +362,7 @@ def _smart_minimize(
continue

# Store it if better than previous minimum(maximum).
if min_acq is None or np.squeeze(res.fun) >= min_acq:
if min_acq is None or np.squeeze(res.fun) < min_acq:
x_try = res.x
x_min = x_try
min_acq = np.squeeze(res.fun)
Expand Down
16 changes: 8 additions & 8 deletions bayes_opt/bayesian_optimization.py
Original file line number Diff line number Diff line change
Expand Up @@ -422,14 +422,14 @@ def load_state(self, path: str | PathLike[str]) -> None:
self._space.set_bounds(new_bounds)
self._bounds_transformer.initialize(self._space)

self._gp.set_params(**state["gp_params"])
if isinstance(self._gp.kernel, dict):
kernel_params = self._gp.kernel
self._gp.kernel = Matern(
length_scale=kernel_params["length_scale"],
length_scale_bounds=tuple(kernel_params["length_scale_bounds"]),
nu=kernel_params["nu"],
)
# Construct the GP kernel
kernel = Matern(**state["gp_params"]["kernel"])
# Re-construct the GP parameters
gp_params = {k: v for k, v in state["gp_params"].items() if k != "kernel"}
gp_params["kernel"] = kernel

# Set the GP parameters
self.set_gp_params(**gp_params)

self._gp.fit(self._space.params, self._space.target)

Expand Down
5 changes: 4 additions & 1 deletion tests/test_acquisition.py
Original file line number Diff line number Diff line change
Expand Up @@ -407,7 +407,10 @@ def verify_optimizers_match(optimizer1, optimizer2):
rng = np.random.default_rng()
assert rng.bit_generator.state["state"]["state"] == rng.bit_generator.state["state"]["state"]

assert optimizer1._gp.kernel.get_params() == optimizer2._gp.kernel.get_params()
kernel_params1 = optimizer1._gp.kernel.get_params()
kernel_params2 = optimizer2._gp.kernel.get_params()
for k in kernel_params1:
assert (np.array(kernel_params1[k]) == np.array(kernel_params2[k])).all()

suggestion1 = optimizer1.suggest()
suggestion2 = optimizer2.suggest()
Expand Down
2 changes: 1 addition & 1 deletion tests/test_bayesian_optimization.py
Original file line number Diff line number Diff line change
Expand Up @@ -582,4 +582,4 @@ def area_of_triangle(sides):
for _ in range(5):
suggestion1 = optimizer.suggest()
suggestion2 = new_optimizer.suggest()
np.testing.assert_array_almost_equal(suggestion1["sides"], suggestion2["sides"], decimal=10)
np.testing.assert_array_almost_equal(suggestion1["sides"], suggestion2["sides"], decimal=7)