Zifu Zhang, Shengxi Li, Henan Liu, Mai Xu, Ce Zhu
🥳 This work is accepted by IEEE Signal Processing Letter.
- conda create -n cps python=3.8
- conda activate cps
- pip install compressai
- pip install pyyaml
- pip install easydict
- pip install tensorboard- Prepare the training dataset and change the path in
./configs/xxx.yaml.
save_folder
├── train # train dataset
└── test # test dataset
- Run the following command.
python train.py --config configs/cps_1_lambda00018.yaml-
Download the checkpoints into
./experiment.lambda Link 0.0018 cps_6 0.0035 cps_5 0.00625 cps_4 0.013 cps_3 0.025 cps_2 0.0483 cps_1 -
Download test datasets.
- Kodak
- CLIC2020_val
- DIV8k
-
Run the following command.
python test.py checkpoint --dataset Kodak -a cps-v4 \ -p experiment/cps_1_lambda00018_v4_best_loss.pth.tar \ -d output/cps_lambda00018_v4_patch256_Kodak \ --config configs/cps_1_lambda00018.yaml --save-image --per-image --patch --cuda
This work is based on Compressai, thanks to the invaluable contributions.
Please cite us if our work is useful for your research.
@article{zhang2025continuous,
title={Continuous Patch Stitching for Block-wise Image Compression},
author={Zhang, Zifu and Li, Shengxi and Liu, Henan and Xu, Mai and Zhu, Ce},
journal={arXiv preprint arXiv:2502.16795},
year={2025}
}
