Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ dependencies = [
"humanize",
"tabulate",
"cachier",
"pystow<=0.7.23",
"pystow>=0.7.28",
"bioversions>=0.8.243",
"bioregistry>=0.12.30",
"ssslm>=0.0.13",
Expand Down
18 changes: 11 additions & 7 deletions src/pyobo/api/embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,15 @@
from __future__ import annotations

import tempfile
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Literal

import bioregistry
import curies
import numpy as np
import pandas as pd
from pystow import get_sentence_transformer
from tqdm import tqdm
from typing_extensions import Unpack

Expand All @@ -34,10 +36,12 @@

def get_text_embedding_model() -> sentence_transformers.SentenceTransformer:
"""Get the default text embedding model."""
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("all-MiniLM-L6-v2")
return model
warnings.warn(
"get_text_embedding_model() is deprecated, use pystow.get_sentence_transfomer() directly",
DeprecationWarning,
stacklevel=2,
)
return get_sentence_transformer()


def _get_text(
Expand Down Expand Up @@ -157,7 +161,7 @@ def get_text_embeddings_df(
luids.append(identifier)
texts.append(text)
if model is None:
model = get_text_embedding_model()
model = get_sentence_transformer()
res = model.encode(texts, show_progress_bar=True)
df = pd.DataFrame(res, index=luids)
df.to_csv(path, sep="\t") # index is important here!
Expand Down Expand Up @@ -199,7 +203,7 @@ def get_text_embedding(
if text is None:
return None
if model is None:
model = get_text_embedding_model()
model = get_sentence_transformer()
res = model.encode([text])
return res[0]

Expand Down Expand Up @@ -239,7 +243,7 @@ def get_text_embedding_similarity(
# 0.24702128767967224
"""
if model is None:
model = get_text_embedding_model()
model = get_sentence_transformer()
e1 = get_text_embedding(reference_1, model=model)
e2 = get_text_embedding(reference_2, model=model)
if e1 is None or e2 is None:
Expand Down
Loading