Skip to content

ManipulaPy is a modular, GPU-accelerated Python package for robotic manipulator simulation, planning, control, and perception. It supports kinematics, dynamics, path planning, control strategies, PyBullet simulation, and even 3D vision with stereo processing and YOLO-based obstacle detection.

License

Notifications You must be signed in to change notification settings

boelnasr/ManipulaPy

Repository files navigation

ManipulaPy

PyPI Python License CI Test Status status

A comprehensive, GPU-accelerated Python package for robotic manipulator analysis, simulation, planning, control, and perception.

Quick StartDocumentationExamplesInstallationContributing


🎯 Overview

ManipulaPy is a modern, comprehensive framework that bridges the gap between basic robotics libraries and sophisticated research tools. It provides seamless integration of kinematics, dynamics, control, and perception systems with optional CUDA acceleration for real-time applications.

Why ManipulaPy?

🔧 Unified Framework: Complete integration from low-level kinematics to high-level perception
⚡ GPU Accelerated: CUDA kernels for trajectory planning and dynamics computation
🔬 Research Ready: Mathematical rigor with practical implementation
🧩 Modular Design: Use individual components or the complete system
📖 Well Documented: Comprehensive guides with theoretical foundations
🆓 Open Source: AGPL-3.0 licensed for transparency and collaboration


✨ Key Features

🔧 Core Robotics

  • Kinematics: Forward/inverse kinematics with Jacobian analysis
  • Dynamics: Mass matrix, Coriolis forces, gravity compensation
  • Control: PID, computed torque, adaptive, robust algorithms
  • Singularity Analysis: Detect singularities and workspace boundaries

🚀 Advanced Capabilities

  • Path Planning: CUDA-accelerated trajectory generation
  • Simulation: Real-time PyBullet physics simulation
  • Vision: Stereo vision, YOLO detection, point clouds
  • URDF Processing: Convert robot models to Python objects

📋 Feature Availability Matrix

ManipulaPy automatically enables features based on available dependencies. Here's what you can expect:

Core Features (Always Available)

Feature CPU Performance Dependencies Notes
Kinematics Excellent numpy, scipy Forward/inverse kinematics, Jacobians
Basic Dynamics Good numpy, scipy Mass matrix, Coriolis, gravity
Control Systems Excellent numpy, scipy PID, computed torque, adaptive
URDF Processing Fast pybullet, urchin Robot model conversion
Small Trajectories Good numba N < 1000 points, auto-optimized

GPU-Accelerated Features (Optional)

Feature CPU vs GPU Requirements Speedup
Large Trajectories 40x+ faster CUDA, cupy N > 1000 points
Batch Processing 20x+ faster CUDA, cupy Multiple trajectories
Inverse Dynamics 100x+ faster CUDA, cupy Large datasets
Workspace Analysis 10x+ faster CUDA, cupy Monte Carlo sampling

Vision Features (Requires System Dependencies)

Feature Requirements Common Issues Solutions
Camera Capture OpenCV, libGL.so.1 ImportError: libGL.so.1 apt install libgl1-mesa-glx
Object Detection ultralytics, internet YOLO download fails Check network, manual download
Stereo Vision OpenCV, calibration Poor depth quality Camera calibration required
3D Point Clouds OpenCV, numpy Memory issues Reduce point cloud density

Installation Check Commands

import ManipulaPy

# Quick check - shows ✅/❌ for each feature
ManipulaPy.check_dependencies()

# Detailed system information
ManipulaPy.print_system_info()

# Get missing dependencies install commands
print(ManipulaPy.get_installation_command())

# Check specific feature
try:
    ManipulaPy.require_feature('cuda')
    print("GPU acceleration ready!")
except ImportError as e:
    print(f"GPU not available: {e}")

🚀 Quick Start

Installation

Before installing ManipulaPy, make sure your system has:

  1. NVIDIA Drivers & CUDA Toolkit

    • nvcc on your PATH (e.g. via sudo apt install nvidia-cuda-toolkit or the official NVIDIA CUDA installer).
    • Verify with:
      nvidia-smi       # should list your GPU(s) and driver version
      nvcc --version   # should print CUDA version
  2. cuDNN

    • Download and install cuDNN for your CUDA version from NVIDIA's cuDNN installation guide.
    • Verify headers/libs under /usr/include and /usr/lib/x86_64-linux-gnu (or your distro’s equivalent).

ManipulaPy attempts to install all dependencies by default for the best user experience. Missing dependencies are handled gracefully - the package will still work with available features.

# One command installs everything (recommended)
pip install ManipulaPy

What gets installed automatically:

  • Core robotics (always): kinematics, dynamics, control, basic trajectory planning
  • 🚀 GPU acceleration (if CUDA available): 40x+ speedups for large problems (N > 1000)
  • 👁️ Vision features (if system supports): camera capture, object detection, stereo vision
  • 🎮 Simulation (if compatible): PyBullet physics simulation and visualization

Check Your Installation

After installation, verify which features are available:

import ManipulaPy

# Quick feature availability check
ManipulaPy.check_dependencies()

# Detailed system information
ManipulaPy.print_system_info()

Alternative Installation Options

# Minimal installation (core features only)
pip install ManipulaPy[minimal]

# Specific CUDA version if auto-detection fails
pip install ManipulaPy[gpu-cuda12]  # For CUDA 12.x

# Headless environments (CI/Docker)
pip install ManipulaPy[vision-headless]

# Development environment
pip install ManipulaPy[dev]

Troubleshooting Common Issues

🚀 GPU Acceleration Not Working:

# Check CUDA installation
nvidia-smi

# Verify CUDA toolkit
nvcc --version

# Install specific CUDA version if needed
pip install cupy-cuda11x  # or cupy-cuda12x

👁️ Vision Features Not Working:

# Ubuntu/Debian - fix libGL.so.1 error
sudo apt-get install libgl1-mesa-glx libglib2.0-0

# CentOS/RHEL
sudo yum install mesa-libGL libglib2.0

# Test OpenCV
python -c "import cv2; print('OpenCV OK')"

🔧 Verify Installation:

# Test core functionality (always works)
from ManipulaPy.kinematics import SerialManipulator
print("✅ Core features working")

# Test GPU acceleration (if available)  
try:
    from ManipulaPy.cuda_kernels import check_cuda_availability
    if check_cuda_availability():
        print("🚀 GPU acceleration available")
    else:
        print("⚠️ GPU acceleration not available")
except ImportError:
    print("⚠️ GPU acceleration not installed")

# Test vision (if available)
try:
    from ManipulaPy.vision import Vision
    print("👁️ Vision features available")
except ImportError:
    print("⚠️ Vision features not available")

What Works Without Additional Setup

✅ Always Available (CPU-only):

  • Forward/inverse kinematics and Jacobians
  • PID, computed torque, adaptive, and robust control
  • URDF processing and robot model conversion
  • PyBullet simulation and visualization
  • Small trajectory planning (N < 1000 points)
  • Singularity analysis and workspace computation

🚀 GPU-Accelerated (optional 40x+ speedup):

  • Large trajectory planning (N > 1000 points)
  • Batch processing multiple trajectories
  • Monte Carlo workspace analysis
  • Inverse dynamics for long trajectories

👁️ Requires System Dependencies:

  • Vision features: OpenCV, system graphics libraries (libGL.so.1)
  • Object detection: YOLO models (auto-downloaded on first use)
  • Stereo processing: Camera calibration data

30-Second Demo

import numpy as np
from ManipulaPy.urdf_processor import URDFToSerialManipulator
from ManipulaPy.path_planning import OptimizedTrajectoryPlanning

# Load robot model (works with any URDF)
try:
    from ManipulaPy.ManipulaPy_data.xarm import urdf_file
except ImportError:
    urdf_file = "path/to/your/robot.urdf"

# Initialize robot
urdf_processor = URDFToSerialManipulator(urdf_file)
robot = urdf_processor.serial_manipulator
dynamics = urdf_processor.dynamics

# Forward kinematics (always available)
joint_angles = np.array([0.1, 0.2, -0.3, -0.5, 0.2, 0.1])
end_effector_pose = robot.forward_kinematics(joint_angles)
print(f"End-effector position: {end_effector_pose[:3, 3]}")

# GPU-accelerated trajectory planning (40x+ faster if GPU available)
joint_limits = [(-np.pi, np.pi)] * 6
planner = OptimizedTrajectoryPlanning(robot, urdf_file, dynamics, joint_limits)

trajectory = planner.joint_trajectory(
    thetastart=np.zeros(6),
    thetaend=joint_angles,
    Tf=5.0, N=1000, method=5  # Quintic time scaling
)

print(f"✅ Generated {trajectory['positions'].shape[0]} trajectory points")

# Check what features are available
import ManipulaPy
features = ManipulaPy.get_available_features()
print(f"Available features: {', '.join(features)}")

# Get performance stats
stats = planner.get_performance_stats()
if stats['gpu_calls'] > 0:
    speedup = stats.get('speedup_achieved', 0)
    print(f"🚀 GPU acceleration achieved {speedup:.1f}x speedup!")
else:
    print("🖥️ Using CPU computation")

📚 Core Modules

🔧 Kinematics & Dynamics

Forward & Inverse Kinematics
# Forward kinematics
pose = robot.forward_kinematics(joint_angles, frame="space")

# Inverse kinematics with advanced solver
target_pose = np.eye(4)
target_pose[:3, 3] = [0.5, 0.3, 0.4]

solution, success, iterations = robot.iterative_inverse_kinematics(
    T_desired=target_pose,
    thetalist0=joint_angles,
    eomg=1e-6, ev=1e-6,
    max_iterations=5000,
    plot_residuals=True
)
Dynamic Analysis
from ManipulaPy.dynamics import ManipulatorDynamics

# Compute dynamics quantities
M = dynamics.mass_matrix(joint_angles)
C = dynamics.velocity_quadratic_forces(joint_angles, joint_velocities)
G = dynamics.gravity_forces(joint_angles, g=[0, 0, -9.81])

# Inverse dynamics: τ = M(q)q̈ + C(q,q̇) + G(q)
torques = dynamics.inverse_dynamics(
    joint_angles, joint_velocities, joint_accelerations,
    [0, 0, -9.81], np.zeros(6)
)

🛤️ Path Planning & Control

Advanced Trajectory Planning
# GPU-accelerated trajectory planning
planner = OptimizedTrajectoryPlanning(
    robot, urdf_file, dynamics, joint_limits,
    use_cuda=True,  # Enable GPU acceleration
    cuda_threshold=200,  # Auto-switch threshold
    enable_profiling=True
)

# Joint space trajectory
trajectory = planner.joint_trajectory(
    thetastart=start_config,
    thetaend=end_config,
    Tf=5.0, N=1000, method=5  # Quintic time scaling
)

# Cartesian space trajectory
cartesian_traj = planner.cartesian_trajectory(
    Xstart=start_pose, Xend=end_pose,
    Tf=3.0, N=500, method=3  # Cubic time scaling
)

# Performance monitoring
stats = planner.get_performance_stats()
print(f"GPU usage: {stats['gpu_usage_percent']:.1f}%")
Advanced Control Systems
from ManipulaPy.control import ManipulatorController

controller = ManipulatorController(dynamics)

# Auto-tuned PID control using Ziegler-Nichols
Ku, Tu = 50.0, 0.5  # Ultimate gain and period
Kp, Ki, Kd = controller.ziegler_nichols_tuning(Ku, Tu, kind="PID")

# Computed torque control
control_torque = controller.computed_torque_control(
    thetalistd=desired_positions,
    dthetalistd=desired_velocities,
    ddthetalistd=desired_accelerations,
    thetalist=current_positions,
    dthetalist=current_velocities,
    g=[0, 0, -9.81], dt=0.01,
    Kp=Kp, Ki=Ki, Kd=Kd
)

# Adaptive control
adaptive_torque = controller.adaptive_control(
    thetalist=current_positions,
    dthetalist=current_velocities,
    ddthetalist=desired_accelerations,
    g=[0, 0, -9.81], Ftip=np.zeros(6),
    measurement_error=position_error,
    adaptation_gain=0.1
)

🌐 Simulation & Visualization

Real-time PyBullet Simulation
from ManipulaPy.sim import Simulation

# Create simulation environment
sim = Simulation(
    urdf_file_path=urdf_file,
    joint_limits=joint_limits,
    time_step=0.01,
    real_time_factor=1.0
)

# Initialize and run
sim.initialize_robot()
sim.initialize_planner_and_controller()
sim.add_joint_parameters()  # GUI sliders

# Execute trajectory
final_pose = sim.run_trajectory(trajectory["positions"])

# Manual control with collision detection
sim.manual_control()
Singularity & Workspace Analysis
from ManipulaPy.singularity import Singularity

analyzer = Singularity(robot)

# Singularity detection
is_singular = analyzer.singularity_analysis(joint_angles)
condition_number = analyzer.condition_number(joint_angles)

# Manipulability ellipsoid
analyzer.manipulability_ellipsoid(joint_angles)

# Workspace visualization with GPU acceleration
analyzer.plot_workspace_monte_carlo(
    joint_limits=joint_limits,
    num_samples=10000
)

👁️ Vision & Perception

Computer Vision Pipeline
from ManipulaPy.vision import Vision
from ManipulaPy.perception import Perception

# Camera configuration
camera_config = {
    "name": "main_camera",
    "intrinsic_matrix": np.array([[500, 0, 320], [0, 500, 240], [0, 0, 1]]),
    "translation": [0, 0, 1.5],
    "rotation": [0, -30, 0],  # degrees
    "fov": 60,
    "use_opencv": True,  # Real camera
    "device_index": 0
}

# Stereo vision setup
left_cam = {**camera_config, "translation": [-0.1, 0, 1.5]}
right_cam = {**camera_config, "translation": [0.1, 0, 1.5]}

vision = Vision(
    camera_configs=[camera_config],
    stereo_configs=(left_cam, right_cam)
)

# Object detection and clustering
perception = Perception(vision)
obstacles, labels = perception.detect_and_cluster_obstacles(
    depth_threshold=3.0,
    eps=0.1, min_samples=5
)

# 3D point cloud from stereo
if vision.stereo_enabled:
    left_img, _ = vision.capture_image(0)
    right_img, _ = vision.capture_image(1)
    point_cloud = vision.get_stereo_point_cloud(left_img, right_img)

📊 Performance Features

GPU Acceleration

ManipulaPy includes highly optimized CUDA kernels for performance-critical operations:

from ManipulaPy.cuda_kernels import check_cuda_availability

if check_cuda_availability():
    print("🚀 CUDA acceleration available!")
    
    # Automatic GPU/CPU switching based on problem size
    planner = OptimizedTrajectoryPlanning(
        robot, urdf_file, dynamics, joint_limits,
        use_cuda=None,  # Auto-detect
        cuda_threshold=200,  # Switch threshold
        memory_pool_size_mb=512  # GPU memory pool
    )
    
    # Batch processing for multiple trajectories
    batch_trajectories = planner.batch_joint_trajectory(
        thetastart_batch=start_configs,  # (batch_size, n_joints)
        thetaend_batch=end_configs,
        Tf=5.0, N=1000, method=5
    )
else:
    print("CPU mode - install GPU support for acceleration")

Performance Monitoring

# Benchmark different implementations
results = planner.benchmark_performance([
    {"N": 1000, "joints": 6, "name": "Medium"},
    {"N": 5000, "joints": 6, "name": "Large"},
    {"N": 1000, "joints": 12, "name": "Many joints"}
])

for name, result in results.items():
    print(f"{name}: {result['total_time']:.3f}s, GPU: {result['used_gpu']}")

📁 Examples & Tutorials

The Examples/ directory contains comprehensive demonstrations that work with different feature combinations:

🎯 Basic Examples (⭐) - CPU Only

These examples work immediately after pip install ManipulaPy with no additional setup required.

Example Description Requirements Output
kinematics_basic_demo.py Forward/inverse kinematics Core only Manipulability plots
dynamics_basic_demo.py Mass matrix, forces Core only Robot analysis
control_basic_demo.py PID, computed torque Core only Control comparison
urdf_processing_basic_demo.py URDF conversion Core + PyBullet Config analysis
small_trajectory_demo.py CPU trajectory planning Core only Path visualization

🔧 Intermediate Examples (⭐⭐) - Optional GPU

These examples automatically use GPU acceleration if available, gracefully fall back to CPU.

Example Description Auto-Detects Performance Boost
trajectory_planning_intermediate_demo.py Large-scale trajectories GPU available 40x+ if N>1000
batch_processing_intermediate_demo.py Multiple trajectory generation GPU available 20x+ for batches
workspace_analysis_intermediate_demo.py Monte Carlo workspace GPU available 10x+ for sampling
dynamics_comparison_intermediate_demo.py CPU vs GPU dynamics GPU available 100x+ for large datasets

🚀 Advanced Examples (⭐⭐⭐) - Full Features

These examples demonstrate complete integration with all available features.

Example Description Requirements Notes
perception_advanced_demo.py Vision + planning OpenCV, YOLO Auto-downloads models
stereo_vision_advanced_demo.py 3D perception OpenCV, calibration Requires camera setup
real_robot_integration_advanced_demo.py Hardware control All features Hardware-dependent
performance_optimization_advanced_demo.py Benchmarking suite GPU recommended Comprehensive analysis

🏃‍♂️ Running Examples with Feature Detection

cd Examples/

# Basic examples - always work
cd basic_examples/
python kinematics_basic_demo.py  # ✅ Always works
python dynamics_basic_demo.py    # ✅ Always works

# Intermediate examples - auto-detect features
cd ../intermediate_examples/
python trajectory_planning_intermediate_demo.py  # 🚀 GPU if available
python batch_processing_intermediate_demo.py --size 1000  # 📊 Scales with hardware

# Advanced examples - check requirements first
cd ../advanced_examples/
python -c "import ManipulaPy; ManipulaPy.check_dependencies()"  # Check first
python perception_advanced_demo.py --enable-yolo  # 👁️ Needs vision
python stereo_vision_advanced_demo.py --camera-pair 0,1  # 📷 Needs cameras

📊 Example Output Management

Examples automatically adapt their output based on available features:

# Example auto-adaptation pattern
def run_trajectory_example():
    import ManipulaPy
    
    # Check what's available
    features = ManipulaPy.get_available_features()
    
    if 'cuda' in features:
        print("🚀 Using GPU acceleration for large trajectories")
        N = 10000  # Large problem size
    else:
        print("🖥️ Using CPU computation for moderate trajectories")
        N = 1000   # Smaller problem size
    
    if 'vision' in features:
        print("👁️ Including vision-based obstacle detection")
        enable_vision = True
    else:
        print("⚠️ Vision features not available, using pre-defined obstacles")
        enable_vision = False
    
    # Run example with appropriate settings...

🎯 Example Selection Guide

New to ManipulaPy?

# Start here - guaranteed to work
python basic_examples/kinematics_basic_demo.py

Have a GPU?

# Check GPU first
python -c "from ManipulaPy.cuda_kernels import check_cuda_availability; print('GPU:', check_cuda_availability())"

# If True, try these for massive speedups
python intermediate_examples/trajectory_planning_intermediate_demo.py --large
python advanced_examples/performance_optimization_advanced_demo.py

Working with cameras?

# Check vision first
python -c "import ManipulaPy; print('Vision:', 'vision' in ManipulaPy.get_available_features())"

# If True, try perception examples
python intermediate_examples/perception_intermediate_demo.py
python advanced_examples/stereo_vision_advanced_demo.py

Need maximum performance?

# Full system check
python -c "import ManipulaPy; ManipulaPy.check_dependencies(verbose=True)"

# Run comprehensive benchmarks
python advanced_examples/performance_optimization_advanced_demo.py --full-benchmark

🧪 Testing & Validation

Test Suite

# Install test dependencies
pip install ManipulaPy[dev]

# Run all tests
python -m pytest tests/ -v --cov=ManipulaPy

# Test specific modules
python -m pytest tests/test_kinematics.py -v
python -m pytest tests/test_dynamics.py -v
python -m pytest tests/test_control.py -v
python -m pytest tests/test_cuda_kernels.py -v  # GPU tests

✅ High-Coverage Modules

Module Coverage Notes
kinematics.py 98% Excellent — near full coverage
dynamics.py 100% Fully tested
perception.py 92% Very solid coverage
vision.py 83% Good; some PyBullet paths skipped
urdf_processor.py 81% Strong test coverage

⚠️ Needs More Testing

Module Coverage Notes
control.py 81% Many skipped due to CuPy mock — test with GPU to improve
sim.py 77% Manual control & GUI parts partially tested
singularity.py 64% Workspace plots & CUDA sampling untested
utils.py 61% Some math utils & decorators untested

🚨 Low/No Coverage

Module Coverage Notes
path_planning.py 39% Large gaps in CUDA-accelerated and plotting logic
cuda_kernels.py 16% Most tests skipped — NUMBA_DISABLE_CUDA=1
transformations.py 0% Not tested at all — consider adding basic SE(3) tests

🧪 Benchmarking & Validation

ManipulaPy includes a comprehensive benchmarking suite to validate performance and accuracy across different hardware configurations.

Benchmark Suite

Located in the Benchmark/ directory, the suite provides three key tools:

Benchmark Purpose Use Case
performance_benchmark.py Comprehensive performance analysis Full system evaluation and optimization
accuracy_benchmark.py Numerical precision validation Algorithm correctness verification
quick_benchmark.py Fast development testing CI/CD integration and regression testing

Real Performance Results

Latest benchmark on 16-core CPU, 31.1GB RAM, NVIDIA GPU (30 SMs):

=== ManipulaPy Performance Benchmark Results ===
Hardware: 16-core CPU, 31.1GB RAM, NVIDIA GPU (30 SMs, 1024 threads/block)
Test Configuration: Large-scale problems (10K-100K trajectory points)

Overall Performance:
  Total Tests: 36 scenarios
  Success Rate: 91.7% (33/36) ✅
  Overall Speedup: 13.02× average acceleration
  CPU Mean Time: 6.88s → GPU Mean Time: 0.53s

🚀 EXCEPTIONAL PERFORMANCE HIGHLIGHTS:

Inverse Dynamics (CUDA Accelerated):
  Mean GPU Speedup: 3,624× (3.6K times faster!)
  Peak Performance: 5,563× speedup achieved
  Real-time Impact: 7s → 0.002s computation

Joint Trajectory Planning:
  Mean GPU Speedup: 2.29×
  Best Case: 7.96× speedup
  Large Problems: Consistent GPU acceleration

Cartesian Trajectories:
  Mean GPU Speedup: 1.02× (CPU competitive)
  Consistent Performance: ±0.04 variance

Performance Recommendations

🎯 OPTIMAL GPU USE CASES:

  • ✅ Inverse dynamics computation (1000×-5000× speedup)
  • ✅ Large trajectory generation (>10K points)
  • ✅ Batch processing multiple trajectories
  • ✅ Real-time control applications

⚠️ CPU-OPTIMAL SCENARIOS:

  • Small trajectories (<1K points)
  • Cartesian space interpolation
  • Single-shot computations
  • Development and debugging

Running Benchmarks

# Quick performance check (< 60 seconds)
cd Benchmark/
python quick_benchmark.py

# Comprehensive GPU vs CPU analysis
python performance_benchmark.py --gpu --plot --save-results

# Validate numerical accuracy
python accuracy_benchmark.py --tolerance 1e-8

📖 Documentation

Online Documentation

Quick Reference

# Check installation and dependencies
import ManipulaPy
ManipulaPy.check_dependencies(verbose=True)

# Module overview
print(ManipulaPy.__version__)  # Current version
print(ManipulaPy.__all__)     # Available modules

# GPU capabilities
from ManipulaPy.cuda_kernels import get_gpu_properties
props = get_gpu_properties()
if props:
    print(f"GPU: {props['multiprocessor_count']} SMs")

🤝 Contributing

We love your input! Whether you're reporting a bug, proposing a new feature, or improving our docs, here's how to get started:

1. Report an Issue

Please open a GitHub Issue with:

  • A descriptive title
  • Steps to reproduce
  • Expected vs. actual behavior
  • Any relevant logs or screenshots

2. Submit a Pull Request

  1. Fork this repository and create your branch:
    git clone https://github.com/<your-username>/ManipulaPy.git
    cd ManipulaPy
    git checkout -b feature/my-feature
  2. Install and set up the development environment:
    pip install -e .[dev]
    pre-commit install     # to run formatters and linters
  3. Make your changes, then run tests and quality checks:
    # Run the full test suite
    python -m pytest tests/ -v
    
    # Lint and format
    black ManipulaPy/
    flake8 ManipulaPy/
    mypy ManipulaPy/
  4. Commit with clear, focused messages and push your branch:
    git add .
    git commit -m "Add awesome new feature"
    git push origin feature/my-feature
  5. Open a Pull Request against main describing your changes.

3. Seek Support

4. Code of Conduct

Please follow our Code of Conduct to keep this community welcoming.

Contribution Areas

  • 🐛 Bug Reports: Issues and edge cases
  • New Features: Algorithms and capabilities
  • 📚 Documentation: Guides and examples
  • 🚀 Performance: CUDA kernels and optimizations
  • 🧪 Testing: Test coverage and validation
  • 🎨 Visualization: Plotting and animation tools

Guidelines

  • Follow PEP 8 style guidelines
  • Add comprehensive tests for new features
  • Update documentation for API changes
  • Include working examples for new functionality
  • Maintain backward compatibility when possible

📄 License & Citation

License

ManipulaPy is licensed under the GNU Affero General Public License v3.0 or later (AGPL-3.0-or-later).

Key Points:

  • Free to use for research and education
  • Modify and distribute under same license
  • Commercial use allowed under AGPL terms
  • ⚠️ Network services must provide source code
  • 📜 See LICENSE for complete terms

Citation

If you use ManipulaPy in your research, please cite:

@software{manipulapy2025,
  title={ManipulaPy: A Comprehensive Python Package for Robotic Manipulator Analysis and Control},
  author={Mohamed Aboelnasr},
  year={2025},
  url={https://github.com/boelnasr/ManipulaPy},
  version={1.1.3},
  license={AGPL-3.0-or-later},
}

Dependencies

All dependencies are AGPL-3.0 compatible:

  • Core: numpy, scipy, matplotlib (BSD)
  • Vision: opencv-python (Apache 2.0), ultralytics (AGPL-3.0)
  • GPU: cupy (MIT), numba (BSD)
  • Simulation: pybullet (Zlib), urchin (MIT)

📞 Support & Community

Getting Help

  1. 📚 Documentation: manipulapy.readthedocs.io
  2. 💡 Examples: Check the Examples/ directory
  3. 🐛 Issues: GitHub Issues
  4. 💬 Discussions: GitHub Discussions
  5. 📧 Contact: [email protected]

Community

  • 🌟 Star the project if you find it useful
  • 🍴 Fork to contribute improvements
  • 📢 Share with the robotics community
  • 📝 Cite in your academic work

Contact Information

Created and maintained by Mohamed Aboelnasr


🏆 Why Choose ManipulaPy?

🔬 For Researchers

  • Comprehensive algorithms with solid mathematical foundations
  • Extensible modular design for new methods
  • Well-documented with theoretical background
  • Proper citation format for publications
  • AGPL-3.0 license for open science

👩‍💻 For Developers

  • High-performance GPU acceleration
  • Clean, readable Python code
  • Modular architecture
  • Comprehensive test suite
  • Active development and support

🏭 For Industry

  • Production-ready with robust error handling
  • Scalable for real-time applications
  • Clear licensing for commercial use
  • Professional documentation
  • Regular updates and maintenance

🤖 ManipulaPy v1.1.3: Professional robotics tools for the Python ecosystem

GitHub stars PyPI Downloads

Empowering robotics research and development with comprehensive, GPU-accelerated tools

⭐ Star on GitHub📦 Install from PyPI📖 Read the Docs

About

ManipulaPy is a modular, GPU-accelerated Python package for robotic manipulator simulation, planning, control, and perception. It supports kinematics, dynamics, path planning, control strategies, PyBullet simulation, and even 3D vision with stereo processing and YOLO-based obstacle detection.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •