Skip to content
Open
30 changes: 17 additions & 13 deletions gtsam_unstable/slam/PartialPriorFactor.h
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,8 @@ namespace gtsam {
*
* @tparam VALUE is the type of variable the prior effects
*/
template<class VALUE>
class PartialPriorFactor: public NoiseModelFactorN<VALUE> {

template <class VALUE>
class PartialPriorFactor : public NoiseModelFactorN<VALUE> {
public:
typedef VALUE T;

Expand Down Expand Up @@ -65,10 +64,10 @@ namespace gtsam {
/** default constructor - only use for serialization */
PartialPriorFactor() {}

/** Single Element Constructor: Prior on a single parameter at index 'idx' in the tangent vector.*/
/** Single Index Constructor: Prior on a single parameter at index 'idx' in the parameter vector.*/
PartialPriorFactor(Key key, size_t idx, double prior, const SharedNoiseModel& model) :
Base(model, key),
prior_((Vector(1) << prior).finished()),
prior_(Vector1(prior)),
indices_(1, idx) {
assert(model->dim() == 1);
}
Expand All @@ -95,7 +94,12 @@ namespace gtsam {
/** print */
void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
Base::print(s, keyFormatter);
gtsam::print(prior_, "prior");
gtsam::print(prior_, "Prior: ");
std::cout << "Indices: ";
for (const int i : indices_) {
std::cout << i << " ";
}
std::cout << std::endl;
}

/** equals */
Expand All @@ -112,13 +116,14 @@ namespace gtsam {
Vector evaluateError(const T& p, OptionalMatrixType H) const override {
Eigen::Matrix<double, T::dimension, T::dimension> H_local;

// If the Rot3 Cayley map is used, Rot3::LocalCoordinates will throw a runtime error
// when asked to compute the Jacobian matrix (see Rot3M.cpp).
#ifdef GTSAM_ROT3_EXPMAP
const Vector full_tangent = T::LocalCoordinates(p, H ? &H_local : nullptr);
#else
// If the Rot3 Cayley map is used, Rot3::LocalCoordinates will throw a runtime
// error when asked to compute the Jacobian matrix (see Rot3M.cpp).
#ifdef GTSAM_ROT3_EXPMAP
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Are we making an assumption here on the type of T ? If so, consider template specialization

const Vector full_tangent =
T::LocalCoordinates(p, H ? &H_local : nullptr);
#else
const Vector full_tangent = T::Logmap(p, H ? &H_local : nullptr);
#endif
#endif

if (H) {
(*H) = Matrix::Zero(indices_.size(), T::dimension);
Expand Down Expand Up @@ -150,7 +155,6 @@ namespace gtsam {
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(prior_);
ar & BOOST_SERIALIZATION_NVP(indices_);
// ar & BOOST_SERIALIZATION_NVP(H_);
}
#endif
}; // \class PartialPriorFactor
Expand Down
133 changes: 100 additions & 33 deletions gtsam_unstable/slam/tests/testPartialPriorFactor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -18,13 +18,17 @@

#include <CppUnitLite/TestHarness.h>

#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>

using namespace std::placeholders;
using namespace std;
using namespace gtsam;

namespace NM = gtsam::noiseModel;

// Pose3 tangent representation is [ Rx Ry Rz Tx Ty Tz ].
// Pose3 parameter representation is [ Rx Ry Rz Tx Ty Tz ].
static const int kIndexRx = 0;
static const int kIndexRy = 1;
static const int kIndexRz = 2;
Expand Down Expand Up @@ -75,8 +79,15 @@ TEST(PartialPriorFactor, JacobianPartialTranslation2) {
Key poseKey(1);
Pose2 measurement(-13.1, 3.14, -0.73);

#ifdef GTSAM_ROT3_EXPMAP
double prior = Pose2::LocalCoordinates(measurement)(0);
#else
double prior = Pose2::Logmap(measurement)(0);
#endif

// Prior on x component of translation.
TestPartialPriorFactor2 factor(poseKey, 0, measurement.x(), NM::Isotropic::Sigma(1, 0.25));
TestPartialPriorFactor2 factor(poseKey, 0, prior,
NM::Isotropic::Sigma(1, 0.25));

Pose2 pose = measurement; // Zero-error linearization point.

Expand All @@ -86,9 +97,10 @@ TEST(PartialPriorFactor, JacobianPartialTranslation2) {

// Use the factor to calculate the derivative.
Matrix actualH1;
factor.evaluateError(pose, actualH1);
Vector e = factor.evaluateError(pose, actualH1);

// Verify we get the expected error.
// Make sure we get the correct error and Jacobian.
CHECK(assert_equal(Vector1::Zero(), e, 1e-5));
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}

Expand All @@ -98,7 +110,12 @@ TEST(PartialPriorFactor, JacobianFullTranslation2) {
Pose2 measurement(-6.0, 3.5, 0.123);

// Prior on x component of translation.
TestPartialPriorFactor2 factor(poseKey, {0, 1}, measurement.translation(),
#ifdef GTSAM_ROT3_EXPMAP
Vector2 prior = Pose2::LocalCoordinates(measurement).head<2>();
#else
Vector2 prior = Pose2::Logmap(measurement).head<2>();
#endif
TestPartialPriorFactor2 factor(poseKey, {0, 1}, prior,
NM::Isotropic::Sigma(2, 0.25));

Pose2 pose = measurement; // Zero-error linearization point.
Expand All @@ -109,9 +126,8 @@ TEST(PartialPriorFactor, JacobianFullTranslation2) {

// Use the factor to calculate the derivative.
Matrix actualH1;
factor.evaluateError(pose, actualH1);

// Verify we get the expected error.
Vector e = factor.evaluateError(pose, actualH1);
CHECK(assert_equal(Vector2::Zero(), e, 1e-5));
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}

Expand All @@ -131,9 +147,8 @@ TEST(PartialPriorFactor, JacobianTheta) {

// Use the factor to calculate the derivative.
Matrix actualH1;
factor.evaluateError(pose, actualH1);

// Verify we get the expected error.
Vector e = factor.evaluateError(pose, actualH1);
CHECK(assert_equal(Vector1::Zero(), e, 1e-5));
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}

Expand Down Expand Up @@ -182,9 +197,8 @@ TEST(PartialPriorFactor, JacobianAtIdentity3) {

// Use the factor to calculate the derivative.
Matrix actualH1;
factor.evaluateError(pose, actualH1);

// Verify we get the expected error.
Vector e = factor.evaluateError(pose, actualH1);
CHECK(assert_equal(Vector1::Zero(), e, 1e-5));
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}

Expand All @@ -194,7 +208,8 @@ TEST(PartialPriorFactor, JacobianPartialTranslation3) {
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
SharedNoiseModel model = NM::Isotropic::Sigma(1, 0.25);

TestPartialPriorFactor3 factor(poseKey, kIndexTy, measurement.translation().y(), model);
TestPartialPriorFactor3 factor(poseKey, kIndexTy,
Pose3::Logmap(measurement)(4), model);

Pose3 pose = measurement; // Zero-error linearization point.

Expand All @@ -204,20 +219,20 @@ TEST(PartialPriorFactor, JacobianPartialTranslation3) {

// Use the factor to calculate the derivative.
Matrix actualH1;
factor.evaluateError(pose, actualH1);

// Verify we get the expected error.
Vector e = factor.evaluateError(pose, actualH1);
CHECK(assert_equal(Vector1::Zero(), e, 1e-5));
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}

/* ************************************************************************* */
TEST(PartialPriorFactor, JacobianFullTranslation3) {
Key poseKey(1);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
Pose3 measurement(Rot3::RzRyRx(-0.15, 0.30, -0.45), Point3(5.0, -8.0, 11.0));
SharedNoiseModel model = NM::Isotropic::Sigma(3, 0.25);

std::vector<size_t> translationIndices = { kIndexTx, kIndexTy, kIndexTz };
TestPartialPriorFactor3 factor(poseKey, translationIndices, measurement.translation(), model);
TestPartialPriorFactor3 factor(poseKey, translationIndices,
Pose3::Logmap(measurement).tail<3>(), model);

// Create a linearization point at the zero-error point
Pose3 pose = measurement; // Zero-error linearization point.
Expand All @@ -228,40 +243,62 @@ TEST(PartialPriorFactor, JacobianFullTranslation3) {

// Use the factor to calculate the derivative.
Matrix actualH1;
factor.evaluateError(pose, actualH1);

// Verify we get the expected error.
Vector e = factor.evaluateError(pose, actualH1);
CHECK(assert_equal(Vector3::Zero(), e, 1e-5));
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}

/* ************************************************************************* */
TEST(PartialPriorFactor, JacobianTxTz3) {
Key poseKey(1);
Pose3 measurement(Rot3::RzRyRx(-0.17, 0.567, M_PI), Point3(10.0, -2.3, 3.14));
Pose3 p(Rot3::RzRyRx(-0.17, 0.567, M_PI), Point3(10.0, -2.3, 3.14));
SharedNoiseModel model = NM::Isotropic::Sigma(2, 0.25);

std::vector<size_t> translationIndices = { kIndexTx, kIndexTz };
TestPartialPriorFactor3 factor(poseKey, translationIndices,
(Vector(2) << measurement.x(), measurement.z()).finished(), model);
Vector2 measurement;
measurement << Pose3::Logmap(p)(3), Pose3::Logmap(p)(5);
TestPartialPriorFactor3 factor(poseKey, translationIndices, measurement,
model);

Pose3 pose = measurement; // Zero-error linearization point.
Pose3 pose = p; // Zero-error linearization point.

// Calculate numerical derivatives.
Matrix expectedH1 = numericalDerivative11<Vector, Pose3>(
[&factor](const Pose3& p) { return factor.evaluateError(p); }, pose);

// Use the factor to calculate the derivative.
Matrix actualH1;
factor.evaluateError(pose, actualH1);
Vector e = factor.evaluateError(pose, actualH1);
// CHECK(assert_equal(Vector2::Zero(), e, 1e-5));
// CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}

/* ************************************************************************* */
TEST(PartialPriorFactor, JacobianPartialRotation3) {
Key poseKey(1);
Pose3 measurement(Rot3::RzRyRx(1.15, -5.30, 0.45), Point3(-1.0, 2.0, -17.0));
SharedNoiseModel model = NM::Isotropic::Sigma(1, 0.25);

// Constrain one axis of rotation.
TestPartialPriorFactor3 factor(poseKey, kIndexRx, Rot3::Logmap(measurement.rotation()).x(), model);

Pose3 pose = measurement; // Zero-error linearization point.

// Verify we get the expected error.
// Calculate numerical derivatives.
Matrix expectedH1 = numericalDerivative11<Vector, Pose3>(
[&factor](const Pose3& p) { return factor.evaluateError(p); }, pose);

// Use the factor to calculate the derivative.
Matrix actualH1;
Vector e = factor.evaluateError(pose, actualH1);
CHECK(assert_equal(Vector1::Zero(), e, 1e-5));
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}

/* ************************************************************************* */
TEST(PartialPriorFactor, JacobianFullRotation3) {
Key poseKey(1);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
Pose3 measurement(Rot3::RzRyRx(0.15, -3.30, 0.01), Point3(-2.0, 4.0, -0.3));
SharedNoiseModel model = NM::Isotropic::Sigma(3, 0.25);

std::vector<size_t> rotationIndices = { kIndexRx, kIndexRy, kIndexRz };
Expand All @@ -275,12 +312,42 @@ TEST(PartialPriorFactor, JacobianFullRotation3) {

// Use the factor to calculate the derivative.
Matrix actualH1;
factor.evaluateError(pose, actualH1);

// Verify we get the expected error.
Vector e = factor.evaluateError(pose, actualH1);
CHECK(assert_equal(Vector3::Zero(), e, 1e-5));
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}

/* ************************************************************************* */
TEST(PartialPriorFactor, FactorGraph1) {
Key poseKey(1);

Pose3 pose(Rot3::RzRyRx(-0.17, 0.567, M_PI), Point3(10.0, -2.3, 3.14));
SharedNoiseModel model = NM::Isotropic::Sigma(6, 0.25);

Vector6 prior = Pose3::Logmap(pose);

// By specifying all of the parameter indices, this effectively becomes a PosePriorFactor.
std::vector<size_t> indices = { 0, 1, 2, 3, 4, 5 };
TestPartialPriorFactor3 factor(poseKey, indices, prior, model);

NonlinearFactorGraph graph;
Values initial;
graph.add(factor);

// Get an initial pose with a small error from groundtruth. Make sure that the
// prior factor is able to correct the final result.
Pose3 pose_error(Rot3::RzRyRx(0.3, -0.03, 0.17), Point3(0.2, -0.14, 0.05));
initial.insert(poseKey, pose_error * pose);
// initial.print("Initial values:\n");

Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
// result.print("Final Result:\n");
Pose3 pose_optimized = result.at<Pose3>(poseKey);

CHECK(assert_equal(pose, pose_optimized, 1e-5));
}


/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */