Skip to content

braindatalab/pattern-gam

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PatternGAM

Code for the paper "Correcting misinterpretations of additive models", accepted to NeurIPS 2025: https://openreview.net/forum?id=2ClM0g9OFT.

The ./nam/ subfolder is adapted from lemeln/nam.


Conda Setup

Set up the environment using the provided environment.yml:

# Create the environment
conda env create -f environment.yml

# Activate the environment
conda activate <env_name>

XAI-TRIS Experiments

To generate XAI-TRIS data and save it to ./artifacts/tetris/data/neurips, run:

python -m data.generate_data data_config 8x8 neurips
  • This uses scenarios from ./data/data_config.json.
  • generate_linesearch.py creates datasets for SNR-tuning line search, which is then run in linesearch.py.
  • visualise_linesearch.ipynb generates training result plots.
  • xai_tris_train_models.py trains the final model parameterizations. Ensure the data folder path at the top of each script matches your setup (e.g., ./artifacts/tetris/data/...).
  • xai_tris_shape_fns.ipynb shows shape functions and the interaction plots for XAI-TRIS
  • xai_tris_explanations.py generates global explanations for the notebooks:
    • xai_tris_qualitative.ipynb
    • xai_tris_quantitative_metrics.ipynb
  • These notebooks generate the plots shown in the paper.
  • fni_emd.ipynb demonstrates explanation styles in the appendix and their metric scores.

COMPAS Recidivism

  • recid.data is used for experiments.
  • compas_nam.ipynb trains the NAM and generates shape functions and PatternGAM results.
  • compas_correlation.py creates correlation plots for the appendix.

Original data and related articles: propublica/compas-analysis.


MIMIC-IV

  • mimic_preprocessing.py processes raw MIMIC-IV data for the 24-hour mortality task (tested with v2.0).
  • mimic_nam.py runs the experiments shown in the main text. Reduce epochs or learners for quicker results.

Data source: MIMIC-IV v2.0 (requires training, data use agreement, and access request).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published