Package that integrates NumPy Arrays into Pydantic!
pydantic_numpy.typingprovides many typings such asNpNDArrayFp64,Np3DArrayFp64(float64 that must be 3D)! Works with bothpydantic.BaseModelandpydantic.dataclassNumpyModel(derived frompydantic.BaseModel) make it possible to dump and loadnp.ndarraywithin model fields alongside other fields that are not instances ofnp.ndarray!
See the groups test to see types that are defined explicitly.
For more examples see test_ndarray.py
import numpy as np
from pydantic import BaseModel
import pydantic_numpy.typing as pnd
from pydantic_numpy import np_array_pydantic_annotated_typing
from pydantic_numpy.model import NumpyModel, MultiArrayNumpyFile
class MyBaseModelDerivedModel(BaseModel):
any_array_dtype_and_dimension: pnd.NpNDArray
# Must be numpy float32 as dtype
k: np_array_pydantic_annotated_typing(data_type=np.float32)
shorthand_for_k: pnd.NpNDArrayFp32
must_be_1d_np_array: np_array_pydantic_annotated_typing(dimensions=1)
class MyDemoNumpyModel(NumpyModel):
k: np_array_pydantic_annotated_typing(data_type=np.float32)
# Instantiate from array
cfg = MyDemoModel(k=[1, 2])
# Instantiate from numpy file
cfg = MyDemoModel(k="path_to/array.npy")
# Instantiate from npz file with key
cfg = MyDemoModel(k=MultiArrayNumpyFile(path="path_to/array.npz", key="k"))
cfg.k # np.ndarray[np.float32]
cfg.dump("path_to_dump_dir", "object_id")
cfg.load("path_to_dump_dir", "object_id")Models with numpy arrays can be serialized to JSON and back:
import numpy as np
from pydantic import BaseModel
import pydantic_numpy.typing as pnd
class MyModel(BaseModel):
array: pnd.Np1DArrayFp64
# Create model with numpy array
model = MyModel(array=np.array([1.5, 2.5, 3.5]))
# Serialize to JSON
json_str = model.model_dump_json()
# {"array":{"data_type":"float64","data":[1.5,2.5,3.5]}}
# Deserialize from JSON
restored = MyModel.model_validate_json(json_str)
# restored.array is now a numpy array: array([1.5, 2.5, 3.5])The generated JSON schema is fully compliant with the JSON Schema specification:
schema = MyModel.model_json_schema()
# {
# "properties": {
# "array": {
# "title": "Numpy Array",
# "type": "object",
# "properties": {
# "data_type": {"title": "dtype", "type": "string", "default": "float64"},
# "data": {"type": "array", "items": {"type": "number"}}
# },
# "required": ["data_type", "data"]
# }
# },
# ...
# }NumpyModel.load requires the original model:
MyNumpyModel.load(<path>)Use model_agnostic_load when you have several models that may be the correct model:
from pydantic_numpy.model import model_agnostic_load
cfg.dump("path_to_dump_dir", "object_id")
equals_cfg = model_agnostic_load("path_to_dump_dir", "object_id", models=[MyNumpyModel, MyDemoModel])There are two ways to define. Function derived types with pydantic_numpy.helper.annotation.np_array_pydantic_annotated_typing.
Function derived types don't work with static type checkers like Pyright and MyPy. In case you need the support, just create the types yourself:
NpStrict1DArrayInt64 = Annotated[
np.ndarray[tuple[int], np.dtype[np.int64]],
NpArrayPydanticAnnotation.factory(data_type=np.int64, dimensions=1, strict_data_typing=True),
]If the default serialization of NumpyArrayTypeData, as outlined in typing.py, doesn't meet your requirements, you have the option to define a custom type with its own serializer. This can be achieved using the NpArrayPydanticAnnotation.factory method, which accepts a custom serialization function through its serialize_numpy_array_to_json parameter. This parameter expects a function of the form Callable[[npt.ArrayLike], Iterable], allowing you to tailor the serialization process to your specific needs.
Example below illustrates definition of 1d-array of float32 type that serializes to flat Python list (without nested dict as in default NumpyArrayTypeData case):
def _serialize_numpy_array_to_float_list(array_like: npt.ArrayLike) -> Iterable:
return np.array(array_like).astype(float).tolist()
Np1DArrayFp32 = Annotated[
np.ndarray[tuple[int], np.dtype[np.float32]],
NpArrayPydanticAnnotation.factory(
data_type=np.float32,
dimensions=1,
strict_data_typing=False,
serialize_numpy_array_to_json=_serialize_numpy_array_to_float_list,
),
]pip install pydantic-numpyThe original idea originates from this discussion, and forked from cheind's repository.