Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,116 @@ if (!require(miselect)) {

library(miselect)

cv.saenet_modified <- function(x, y, pf, adWeight, weights, family = c("gaussian", "binomial"),
alpha = 1, nlambda = 100, lambda.min.ratio =
ifelse(isTRUE(all.equal(adWeight, rep(1, p))), 1e-3, 1e-6),
lambda = NULL, nfolds = 5, foldid = NULL, maxit = 1000,
eps = 1e-5)
{
call <- match.call()

if (!is.list(x))
stop("'x' should be a list of numeric matrices.")
if (any(sapply(x, function(.x) !is.matrix(.x) || !is.numeric(.x))))
stop("Every 'x' should be a numeric matrix.")

dim <- dim(x[[1]])
n <- dim[1]
p <- dim[2]
m <- length(x)

if (!is.numeric(nfolds) || length(nfolds) > 1)
stop("'nfolds' should a be single number.")

if (!is.null(foldid))
if (!is.numeric(foldid) || length(foldid) != length(y[[1]]))
stop("'nfolds' should a be single number.")

fit <- saenet(x, y, pf, adWeight, weights, family, alpha, nlambda,
lambda.min.ratio, lambda, maxit, eps)

X <- do.call("rbind", x)
Y <- do.call("c", y)

weights <- rep(weights / m , m)

if (!is.null(foldid)) {
if (!is.numeric(foldid) || !is.vector(foldid) || length(foldid) != n)
stop("'foldid' must be length n numeric vector.")
nfolds <- max(foldid)
} else {
r <- n %% nfolds
q <- (n - r) / nfolds
if(r == 0) {
foldid = rep(seq(nfolds), q)
} else {
foldid = c(rep(seq(nfolds), q), seq(r))
}
foldid <- sample(foldid, n)
foldid <- rep(foldid, m)
}
if (nfolds < 3)
stop("'nfolds' must be bigger than 3.")

lambda <- fit$lambda
nlambda <- length(lambda)
X.scaled <- scale(X, scale = apply(X, 2, function(.X) stats::sd(.X) * sqrt(m)))

cvm <- array(0, c(nlambda, length(alpha), nfolds))
cvse <- matrix(nlambda, length(alpha))
for (j in seq(nfolds)) {
Y.train <- Y[foldid != j]
X.train <- subset_scaled_matrix(X.scaled, foldid != j)
w.train <- weights[foldid != j]

X.test <- X[foldid == j, , drop = F]
Y.test <- Y[foldid == j]
w.test <- weights[foldid == j]

cv.fit <- switch(match.arg(family),
gaussian = fit.saenet.gaussian(X.train, Y.train, n, p, m, w.train,
nlambda, lambda, alpha, pf, adWeight,
maxit, eps),
binomial = fit.saenet.binomial(X.train, Y.train, n, p, m, w.train,
nlambda, lambda, alpha, pf, adWeight,
maxit, eps)
)

cvm[,, j] <- cv.saenet.err(cv.fit, X.test, Y.test, w.test, m)
}

cvse <- apply(cvm, c(1, 2), stats::sd) / sqrt(nfolds)
cvm <- apply(cvm, c(1, 2), mean)

min.id = which(cvm == min(cvm), arr.ind = TRUE)
se = cvse[min.id[1,1], min.id[1,2]] # modified
range = min(cvm) + se

all.id = which(cvm < range, arr.ind = TRUE)
lambda.seq = lambda[all.id[, 1]]
alpha.seq = alpha[all.id[, 2]]
L1 = lambda.seq * alpha.seq
L1.max.id = which(L1 == max(L1))
lambda.1se.id = all.id[L1.max.id, 1]
alpha.1se.id = all.id[L1.max.id, 2]
lambda.1se = lambda[lambda.1se.id]
alpha.1se = alpha[alpha.1se.id]
i.min <- which.min(apply(cvm, 1, min))
j.min <- which.min(apply(cvm, 2, min))

lambda.min <- fit$lambda[i.min]
alpha.min <- fit$alpha[j.min]

structure(list(call = call, lambda = fit$lambda, alpha = alpha, cvm = cvm,
cvse = cvse, saenet.fit = fit,
lambda.min = lambda.min,
alpha.min = alpha.min,
lambda.1se = lambda.1se, alpha.1se =
alpha.1se, df = fit$df), class = "cv.saenet")
}

environment(cv.saenet_modified) <- asNamespace("miselect")

# command args
temp_dir <- NULL
seed <- NULL
Expand Down Expand Up @@ -104,7 +214,7 @@ for (i in 2:dim(causal_order)[1]) {
adWeight_cv <- rep(1, length(predictors))

fit <- saenet(x, y, pf, adWeight_cv, weights, family=family)
CV <- cv.saenet(x, y, pf, adWeight_cv, weights, lambda=fit$lambda, family=family)
CV <- cv.saenet_modified(x, y, pf, adWeight_cv, weights, lambda=fit$lambda, family=family)
coef_cv <- fit$coef[, 1, ]

lambda_list_cv <- fit$lambda
Expand All @@ -129,7 +239,7 @@ for (i in 2:dim(causal_order)[1]) {
adWeight_cv <- abs_beta_hat_cv ** (-gamma)

fit <- saenet(x, y, pf, adWeight_cv, weights, family=family)
CV <- cv.saenet(x, y, pf, adWeight_cv, weights, lambda=fit$lambda, family=family)
CV <- cv.saenet_modified(x, y, pf, adWeight_cv, weights, lambda=fit$lambda, family=family)

lambda_list_cv <- fit$lambda
lambda_cv <- CV[[key]]
Expand Down