Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -21,18 +21,9 @@ def _get_relevant_documents(
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
elif self.search_type == "similarity_score_threshold":
docs_and_similarities = self.vectorstore.similarity_search_with_score(query, **self.search_kwargs)
docs_and_similarities = self.vectorstore.similarity_search_with_relevance_scores(query, **self.search_kwargs)
score_threshold = self.search_kwargs.get("score_threshold", None)

if any(
similarity < 0.0 or similarity > 1.0
for _, similarity in docs_and_similarities
):
warnings.warn(
"Relevance scores must be between"
f" 0 and 1, got {docs_and_similarities}"
)

if score_threshold is not None: # can be 0, but not None
docs_and_similarities = [
doc
Expand Down Expand Up @@ -62,22 +53,13 @@ async def _aget_relevant_documents(
)
elif self.search_type == "similarity_score_threshold":
docs_and_similarities = (
await self.vectorstore.asimilarity_search_with_score(query, **self.search_kwargs)
await self.vectorstore.asimilarity_search_with_relevance_scores(query, **self.search_kwargs)
)
score_threshold = self.search_kwargs.get("score_threshold", None)

if any(
similarity < 0.0 or similarity > 1.0
for _, similarity in docs_and_similarities
):
warnings.warn(
"Relevance scores must be between"
f" 0 and 1, got {docs_and_similarities}"
)

if score_threshold is not None: # can be 0, but not None
docs_and_similarities = [
(doc, similarity)
doc
for doc, similarity in docs_and_similarities
if similarity >= score_threshold
]
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import os
from typing import Dict, List, Optional
from typing import Callable, Dict, List, Optional

from langchain.schema import Document
from langchain.vectorstores.milvus import Milvus
Expand Down Expand Up @@ -79,7 +79,7 @@ def do_search(self, query: str, top_k: int, score_threshold: float):
self._load_milvus()
# embed_func = get_Embeddings(self.embed_model)
# embeddings = embed_func.embed_query(query)
# docs = self.milvus.similarity_search_with_score_by_vector(embeddings, top_k)
self.milvus._select_relevance_score_fn = self._select_relevance_score_fn
retriever = get_Retriever("milvusvectorstore").from_vectorstore(
self.milvus,
top_k=top_k,
Expand Down Expand Up @@ -121,6 +121,38 @@ def do_clear_vs(self):
self.do_drop_kb()
self.do_init()

def _select_relevance_score_fn(self) -> Callable[[float], float]:
def _map_l2_to_similarity(l2_distance: float) -> float:
"""Return a similarity score on a scale [0, 1].
It is recommended that the original vector is normalized,
Milvus only calculates the value before applying square root.
l2_distance range: (0 is most similar, 4 most dissimilar)
See
https://milvus.io/docs/metric.md?tab=floating#Euclidean-distance-L2
"""
return 1 - l2_distance / 4.0

def _map_ip_to_similarity(ip_score: float) -> float:
"""Return a similarity score on a scale [0, 1].
It is recommended that the original vector is normalized,
ip_score range: (1 is most similar, -1 most dissimilar)
See
https://milvus.io/docs/metric.md?tab=floating#Inner-product-IP
https://milvus.io/docs/metric.md?tab=floating#Cosine-Similarity
"""
return (ip_score + 1) / 2.0

metric_type = self.milvus.search_params.get("metric_type")
if metric_type == "L2":
return _map_l2_to_similarity
elif metric_type in ["IP", "COSINE"]:
return _map_ip_to_similarity
else:
raise ValueError(
"No supported normalization function"
f" for metric type: {metric_type}."
)


if __name__ == "__main__":
# 测试建表使用
Expand Down