Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 44 additions & 0 deletions motmetrics/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -500,6 +500,44 @@ def num_fragmentations(df, obj_frequencies):
simple_add_func.append(num_fragmentations)


def average_overlap(df):
mdf = df.full[(df.full.Type == 'MATCH') | (df.full.Type == 'MISS')]
overlaps = mdf.reset_index().set_index('FrameId')['D'].fillna(0).groupby('FrameId')
return overlaps.agg(np.mean)


simple_add_func.append(average_overlap)


def num_overlaps(df):
mdf = df.full[(df.full.Type == 'MATCH') | (df.full.Type == 'MISS')]
overlaps = mdf.reset_index().set_index('FrameId')['D'].fillna(0).groupby('FrameId')
return overlaps.count().sum()


simple_add_func.append(num_overlaps)


def modp(df, average_overlap):
del df
return average_overlap.mean()


def modp_m(partials, average_overlap):
del partials
return average_overlap.mean()


def moda(df, num_overlaps, num_misses, num_false_positives):
del df
return math_util.quiet_divide(num_misses+num_false_positives, num_overlaps)


def moda_m(partials, num_overlaps, num_misses, num_false_positives):
del partials
return math_util.quiet_divide(num_misses+num_false_positives, num_overlaps)


def motp(df, num_detections):
"""Multiple object tracker precision."""
return math_util.quiet_divide(df.noraw['D'].sum(), num_detections)
Expand Down Expand Up @@ -742,6 +780,10 @@ def create():
m.register(partially_tracked, formatter='{:d}'.format)
m.register(mostly_lost, formatter='{:d}'.format)
m.register(num_fragmentations)
m.register(average_overlap, formatter='{:d}'.format)
m.register(num_overlaps, formatter='{:d}'.format)
m.register(modp, formatter='{:.3f}'.format)
m.register(moda, formatter='{:.3f}'.format)
m.register(motp, formatter='{:.3f}'.format)
m.register(mota, formatter='{:.1%}'.format)
m.register(precision, formatter='{:.1%}'.format)
Expand Down Expand Up @@ -772,6 +814,8 @@ def create():
'num_misses',
'num_switches',
'num_fragmentations',
'modp',
'moda',
'mota',
'motp',
'num_transfer',
Expand Down
8 changes: 4 additions & 4 deletions motmetrics/tests/test_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -369,10 +369,10 @@ def compute_motchallenge(dname):
print()
print(mm.io.render_summary(summary, namemap=mm.io.motchallenge_metric_names, formatters=mh.formatters))
# assert ((summary['num_transfer'] - summary['num_migrate']) == (summary['num_switches'] - summary['num_ascend'])).all() # False assertion
summary = summary[mm.metrics.motchallenge_metrics[:15]]
summary = summary[mm.metrics.motchallenge_metrics[:17]]
expected = pd.DataFrame([
[0.557659, 0.729730, 0.451253, 0.582173, 0.941441, 8.0, 1, 6, 1, 13, 150, 7, 7, 0.526462, 0.277201],
[0.644619, 0.819760, 0.531142, 0.608997, 0.939920, 10.0, 5, 4, 1, 45, 452, 7, 6, 0.564014, 0.345904],
[0.624296, 0.799176, 0.512211, 0.602640, 0.940268, 18.0, 6, 10, 2, 58, 602, 14, 13, 0.555116, 0.330177],
[0.557659, 0.729730, 0.451253, 0.582173, 0.941441, 8.0, 1, 6, 1, 13, 150, 7, 7, 0.160351, 0.463068, 0.526462, 0.277201],
[0.644619, 0.819760, 0.531142, 0.608997, 0.939920, 10.0, 5, 4, 1, 45, 452, 7, 6, 0.210594, 0.432550, 0.564014, 0.345904],
[0.624296, 0.799176, 0.512211, 0.602640, 0.940268, 18.0, 6, 10, 2, 58, 602, 14, 13, 0.351243, 0.439707, 0.555116, 0.330177],
])
np.testing.assert_allclose(summary, expected, atol=1e-3)