Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/execution/live_updater.rs
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ impl SourceUpdateTask {
.next()
.await
.transpose()
.map_err(retryable::Error::always_retryable)
.map_err(retryable::Error::retryable)
},
&retry_options,
)
Expand Down
178 changes: 102 additions & 76 deletions src/llm/openai.rs
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
use crate::api_bail;
use crate::prelude::*;
use base64::prelude::*;

use super::{LlmEmbeddingClient, LlmGenerationClient, detect_image_mime_type};
use anyhow::Result;
use async_openai::{
Client as OpenAIClient,
config::OpenAIConfig,
error::OpenAIError,
types::{
ChatCompletionRequestMessage, ChatCompletionRequestMessageContentPartImage,
ChatCompletionRequestMessageContentPartText, ChatCompletionRequestSystemMessage,
Expand All @@ -14,8 +15,6 @@ use async_openai::{
ResponseFormat, ResponseFormatJsonSchema,
},
};
use async_trait::async_trait;
use base64::prelude::*;
use phf::phf_map;

static DEFAULT_EMBEDDING_DIMENSIONS: phf::Map<&str, u32> = phf_map! {
Expand Down Expand Up @@ -62,77 +61,99 @@ impl Client {
}
}

#[async_trait]
impl LlmGenerationClient for Client {
async fn generate<'req>(
&self,
request: super::LlmGenerateRequest<'req>,
) -> Result<super::LlmGenerateResponse> {
let mut messages = Vec::new();

// Add system prompt if provided
if let Some(system) = request.system_prompt {
messages.push(ChatCompletionRequestMessage::System(
ChatCompletionRequestSystemMessage {
content: ChatCompletionRequestSystemMessageContent::Text(system.into_owned()),
..Default::default()
},
));
impl utils::retryable::IsRetryable for OpenAIError {
fn is_retryable(&self) -> bool {
match self {
OpenAIError::Reqwest(e) => e.is_retryable(),
_ => false,
}
}
}

// Add user message
let user_message_content = match request.image {
Some(img_bytes) => {
let base64_image = BASE64_STANDARD.encode(img_bytes.as_ref());
let mime_type = detect_image_mime_type(img_bytes.as_ref())?;
let image_url = format!("data:{mime_type};base64,{base64_image}");
ChatCompletionRequestUserMessageContent::Array(vec![
ChatCompletionRequestUserMessageContentPart::Text(
ChatCompletionRequestMessageContentPartText {
text: request.user_prompt.into_owned(),
},
),
ChatCompletionRequestUserMessageContentPart::ImageUrl(
ChatCompletionRequestMessageContentPartImage {
image_url: async_openai::types::ImageUrl {
url: image_url,
detail: Some(ImageDetail::Auto),
},
},
),
])
}
None => ChatCompletionRequestUserMessageContent::Text(request.user_prompt.into_owned()),
};
messages.push(ChatCompletionRequestMessage::User(
ChatCompletionRequestUserMessage {
content: user_message_content,
fn create_llm_generation_request(
request: &super::LlmGenerateRequest,
) -> Result<CreateChatCompletionRequest> {
let mut messages = Vec::new();

// Add system prompt if provided
if let Some(system) = &request.system_prompt {
messages.push(ChatCompletionRequestMessage::System(
ChatCompletionRequestSystemMessage {
content: ChatCompletionRequestSystemMessageContent::Text(system.to_string()),
..Default::default()
},
));
}

// Create the chat completion request
let request = CreateChatCompletionRequest {
model: request.model.to_string(),
messages,
response_format: match request.output_format {
Some(super::OutputFormat::JsonSchema { name, schema }) => {
Some(ResponseFormat::JsonSchema {
json_schema: ResponseFormatJsonSchema {
name: name.into_owned(),
description: None,
schema: Some(serde_json::to_value(&schema)?),
strict: Some(true),
// Add user message
let user_message_content = match &request.image {
Some(img_bytes) => {
let base64_image = BASE64_STANDARD.encode(img_bytes.as_ref());
let mime_type = detect_image_mime_type(img_bytes.as_ref())?;
let image_url = format!("data:{mime_type};base64,{base64_image}");
ChatCompletionRequestUserMessageContent::Array(vec![
ChatCompletionRequestUserMessageContentPart::Text(
ChatCompletionRequestMessageContentPartText {
text: request.user_prompt.to_string(),
},
),
ChatCompletionRequestUserMessageContentPart::ImageUrl(
ChatCompletionRequestMessageContentPartImage {
image_url: async_openai::types::ImageUrl {
url: image_url,
detail: Some(ImageDetail::Auto),
},
})
}
None => None,
},
},
),
])
}
None => ChatCompletionRequestUserMessageContent::Text(request.user_prompt.to_string()),
};
messages.push(ChatCompletionRequestMessage::User(
ChatCompletionRequestUserMessage {
content: user_message_content,
..Default::default()
};
},
));
// Create the chat completion request
let request = CreateChatCompletionRequest {
model: request.model.to_string(),
messages,
response_format: match &request.output_format {
Some(super::OutputFormat::JsonSchema { name, schema }) => {
Some(ResponseFormat::JsonSchema {
json_schema: ResponseFormatJsonSchema {
name: name.to_string(),
description: None,
schema: Some(serde_json::to_value(&schema)?),
strict: Some(true),
},
})
}
None => None,
},
..Default::default()
};

// Send request and get response
let response = self.client.chat().create(request).await?;
Ok(request)
}

#[async_trait]
impl LlmGenerationClient for Client {
async fn generate<'req>(
&self,
request: super::LlmGenerateRequest<'req>,
) -> Result<super::LlmGenerateResponse> {
let request = &request;
let response = retryable::run(
|| async {
let req = create_llm_generation_request(request)?;
let response = self.client.chat().create(req).await?;
retryable::Ok(response)
},
&retryable::RetryOptions::default(),
)
.await?;

// Extract the response text from the first choice
let text = response
Expand Down Expand Up @@ -161,16 +182,21 @@ impl LlmEmbeddingClient for Client {
&self,
request: super::LlmEmbeddingRequest<'req>,
) -> Result<super::LlmEmbeddingResponse> {
let response = self
.client
.embeddings()
.create(CreateEmbeddingRequest {
model: request.model.to_string(),
input: EmbeddingInput::String(request.text.to_string()),
dimensions: request.output_dimension,
..Default::default()
})
.await?;
let response = retryable::run(
|| async {
self.client
.embeddings()
.create(CreateEmbeddingRequest {
model: request.model.to_string(),
input: EmbeddingInput::String(request.text.to_string()),
dimensions: request.output_dimension,
..Default::default()
})
.await
},
&retryable::RetryOptions::default(),
)
.await?;
Ok(super::LlmEmbeddingResponse {
embedding: response
.data
Expand Down
3 changes: 1 addition & 2 deletions src/ops/targets/neo4j.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1070,8 +1070,7 @@ impl TargetFactoryBase for Factory {
},
&retry_options,
)
.await
.map_err(Into::<anyhow::Error>::into)?
.await?;
}
Ok(())
}
Expand Down
15 changes: 11 additions & 4 deletions src/utils/retryable.rs
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,8 @@ pub trait IsRetryable {
}

pub struct Error {
error: anyhow::Error,
is_retryable: bool,
pub error: anyhow::Error,
pub is_retryable: bool,
}

pub const DEFAULT_RETRY_TIMEOUT: Duration = Duration::from_secs(10 * 60);
Expand Down Expand Up @@ -40,12 +40,19 @@ impl IsRetryable for reqwest::Error {
}

impl Error {
pub fn always_retryable(error: anyhow::Error) -> Self {
pub fn retryable<E: Into<anyhow::Error>>(error: E) -> Self {
Self {
error,
error: error.into(),
is_retryable: true,
}
}

pub fn not_retryable<E: Into<anyhow::Error>>(error: E) -> Self {
Self {
error: error.into(),
is_retryable: false,
}
}
}

impl From<anyhow::Error> for Error {
Expand Down