|
9 | 9 | }, |
10 | 10 | { |
11 | 11 | "cell_type": "code", |
12 | | - "execution_count": 51, |
13 | | - "metadata": { |
14 | | - "collapsed": true |
15 | | - }, |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
16 | 14 | "outputs": [], |
17 | 15 | "source": [ |
18 | 16 | "import pandas as pd\n", |
|
22 | 20 | }, |
23 | 21 | { |
24 | 22 | "cell_type": "code", |
25 | | - "execution_count": 52, |
| 23 | + "execution_count": 2, |
26 | 24 | "metadata": {}, |
27 | 25 | "outputs": [ |
28 | 26 | { |
|
89 | 87 | "4 4000 725000" |
90 | 88 | ] |
91 | 89 | }, |
92 | | - "execution_count": 52, |
| 90 | + "execution_count": 2, |
93 | 91 | "metadata": {}, |
94 | 92 | "output_type": "execute_result" |
95 | 93 | } |
|
101 | 99 | }, |
102 | 100 | { |
103 | 101 | "cell_type": "code", |
104 | | - "execution_count": 62, |
| 102 | + "execution_count": 3, |
105 | 103 | "metadata": {}, |
106 | 104 | "outputs": [ |
107 | 105 | { |
108 | 106 | "data": { |
109 | 107 | "text/plain": [ |
110 | | - "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)" |
| 108 | + "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,\n", |
| 109 | + " normalize=False)" |
111 | 110 | ] |
112 | 111 | }, |
113 | | - "execution_count": 62, |
| 112 | + "execution_count": 3, |
114 | 113 | "metadata": {}, |
115 | 114 | "output_type": "execute_result" |
116 | 115 | } |
|
122 | 121 | }, |
123 | 122 | { |
124 | 123 | "cell_type": "code", |
125 | | - "execution_count": 63, |
| 124 | + "execution_count": 4, |
126 | 125 | "metadata": {}, |
127 | 126 | "outputs": [ |
128 | 127 | { |
129 | 128 | "data": { |
130 | 129 | "text/plain": [ |
131 | | - "array([ 135.78767123])" |
| 130 | + "array([135.78767123])" |
132 | 131 | ] |
133 | 132 | }, |
134 | | - "execution_count": 63, |
| 133 | + "execution_count": 4, |
135 | 134 | "metadata": {}, |
136 | 135 | "output_type": "execute_result" |
137 | 136 | } |
|
142 | 141 | }, |
143 | 142 | { |
144 | 143 | "cell_type": "code", |
145 | | - "execution_count": 64, |
| 144 | + "execution_count": 5, |
146 | 145 | "metadata": {}, |
147 | 146 | "outputs": [ |
148 | 147 | { |
|
151 | 150 | "180616.43835616432" |
152 | 151 | ] |
153 | 152 | }, |
154 | | - "execution_count": 64, |
| 153 | + "execution_count": 5, |
155 | 154 | "metadata": {}, |
156 | 155 | "output_type": "execute_result" |
157 | 156 | } |
|
162 | 161 | }, |
163 | 162 | { |
164 | 163 | "cell_type": "code", |
165 | | - "execution_count": 65, |
| 164 | + "execution_count": 7, |
166 | 165 | "metadata": {}, |
167 | 166 | "outputs": [ |
168 | 167 | { |
169 | 168 | "data": { |
170 | 169 | "text/plain": [ |
171 | | - "array([ 859554.79452055])" |
| 170 | + "array([859554.79452055])" |
172 | 171 | ] |
173 | 172 | }, |
174 | | - "execution_count": 65, |
| 173 | + "execution_count": 7, |
175 | 174 | "metadata": {}, |
176 | 175 | "output_type": "execute_result" |
177 | 176 | } |
178 | 177 | ], |
179 | 178 | "source": [ |
180 | | - "model.predict(5000)" |
| 179 | + "model.predict([[5000]])" |
181 | 180 | ] |
182 | 181 | }, |
183 | 182 | { |
|
189 | 188 | }, |
190 | 189 | { |
191 | 190 | "cell_type": "code", |
192 | | - "execution_count": 34, |
193 | | - "metadata": { |
194 | | - "collapsed": true |
195 | | - }, |
| 191 | + "execution_count": 8, |
| 192 | + "metadata": {}, |
196 | 193 | "outputs": [], |
197 | 194 | "source": [ |
198 | 195 | "import pickle" |
199 | 196 | ] |
200 | 197 | }, |
201 | 198 | { |
202 | 199 | "cell_type": "code", |
203 | | - "execution_count": 66, |
| 200 | + "execution_count": 9, |
204 | 201 | "metadata": {}, |
205 | 202 | "outputs": [], |
206 | 203 | "source": [ |
|
217 | 214 | }, |
218 | 215 | { |
219 | 216 | "cell_type": "code", |
220 | | - "execution_count": 74, |
221 | | - "metadata": { |
222 | | - "collapsed": true |
223 | | - }, |
| 217 | + "execution_count": 10, |
| 218 | + "metadata": {}, |
224 | 219 | "outputs": [], |
225 | 220 | "source": [ |
226 | 221 | "with open('model_pickle','rb') as file:\n", |
|
229 | 224 | }, |
230 | 225 | { |
231 | 226 | "cell_type": "code", |
232 | | - "execution_count": 75, |
| 227 | + "execution_count": 11, |
233 | 228 | "metadata": {}, |
234 | 229 | "outputs": [ |
235 | 230 | { |
236 | 231 | "data": { |
237 | 232 | "text/plain": [ |
238 | | - "array([ 135.78767123])" |
| 233 | + "array([135.78767123])" |
239 | 234 | ] |
240 | 235 | }, |
241 | | - "execution_count": 75, |
| 236 | + "execution_count": 11, |
242 | 237 | "metadata": {}, |
243 | 238 | "output_type": "execute_result" |
244 | 239 | } |
|
249 | 244 | }, |
250 | 245 | { |
251 | 246 | "cell_type": "code", |
252 | | - "execution_count": 76, |
| 247 | + "execution_count": 12, |
253 | 248 | "metadata": { |
254 | 249 | "scrolled": true |
255 | 250 | }, |
|
260 | 255 | "180616.43835616432" |
261 | 256 | ] |
262 | 257 | }, |
263 | | - "execution_count": 76, |
| 258 | + "execution_count": 12, |
264 | 259 | "metadata": {}, |
265 | 260 | "output_type": "execute_result" |
266 | 261 | } |
|
271 | 266 | }, |
272 | 267 | { |
273 | 268 | "cell_type": "code", |
274 | | - "execution_count": 77, |
| 269 | + "execution_count": 13, |
275 | 270 | "metadata": {}, |
276 | 271 | "outputs": [ |
277 | 272 | { |
278 | 273 | "data": { |
279 | 274 | "text/plain": [ |
280 | | - "array([ 859554.79452055])" |
| 275 | + "array([859554.79452055])" |
281 | 276 | ] |
282 | 277 | }, |
283 | | - "execution_count": 77, |
| 278 | + "execution_count": 13, |
284 | 279 | "metadata": {}, |
285 | 280 | "output_type": "execute_result" |
286 | 281 | } |
287 | 282 | ], |
288 | 283 | "source": [ |
289 | | - "mp.predict(5000)" |
| 284 | + "mp.predict([[5000]])" |
290 | 285 | ] |
291 | 286 | }, |
292 | 287 | { |
|
298 | 293 | }, |
299 | 294 | { |
300 | 295 | "cell_type": "code", |
301 | | - "execution_count": 44, |
302 | | - "metadata": { |
303 | | - "collapsed": true |
304 | | - }, |
| 296 | + "execution_count": 14, |
| 297 | + "metadata": {}, |
305 | 298 | "outputs": [], |
306 | 299 | "source": [ |
307 | 300 | "from sklearn.externals import joblib" |
308 | 301 | ] |
309 | 302 | }, |
310 | 303 | { |
311 | 304 | "cell_type": "code", |
312 | | - "execution_count": 67, |
| 305 | + "execution_count": 15, |
313 | 306 | "metadata": {}, |
314 | 307 | "outputs": [ |
315 | 308 | { |
|
318 | 311 | "['model_joblib']" |
319 | 312 | ] |
320 | 313 | }, |
321 | | - "execution_count": 67, |
| 314 | + "execution_count": 15, |
322 | 315 | "metadata": {}, |
323 | 316 | "output_type": "execute_result" |
324 | 317 | } |
|
336 | 329 | }, |
337 | 330 | { |
338 | 331 | "cell_type": "code", |
339 | | - "execution_count": 70, |
340 | | - "metadata": { |
341 | | - "collapsed": true |
342 | | - }, |
| 332 | + "execution_count": 16, |
| 333 | + "metadata": {}, |
343 | 334 | "outputs": [], |
344 | 335 | "source": [ |
345 | 336 | "mj = joblib.load('model_joblib')" |
346 | 337 | ] |
347 | 338 | }, |
348 | 339 | { |
349 | 340 | "cell_type": "code", |
350 | | - "execution_count": 71, |
| 341 | + "execution_count": 17, |
351 | 342 | "metadata": {}, |
352 | 343 | "outputs": [ |
353 | 344 | { |
354 | 345 | "data": { |
355 | 346 | "text/plain": [ |
356 | | - "array([ 135.78767123])" |
| 347 | + "array([135.78767123])" |
357 | 348 | ] |
358 | 349 | }, |
359 | | - "execution_count": 71, |
| 350 | + "execution_count": 17, |
360 | 351 | "metadata": {}, |
361 | 352 | "output_type": "execute_result" |
362 | 353 | } |
|
367 | 358 | }, |
368 | 359 | { |
369 | 360 | "cell_type": "code", |
370 | | - "execution_count": 72, |
| 361 | + "execution_count": 18, |
371 | 362 | "metadata": { |
372 | 363 | "scrolled": true |
373 | 364 | }, |
|
378 | 369 | "180616.43835616432" |
379 | 370 | ] |
380 | 371 | }, |
381 | | - "execution_count": 72, |
| 372 | + "execution_count": 18, |
382 | 373 | "metadata": {}, |
383 | 374 | "output_type": "execute_result" |
384 | 375 | } |
|
389 | 380 | }, |
390 | 381 | { |
391 | 382 | "cell_type": "code", |
392 | | - "execution_count": 73, |
| 383 | + "execution_count": 19, |
393 | 384 | "metadata": {}, |
394 | 385 | "outputs": [ |
395 | 386 | { |
396 | 387 | "data": { |
397 | 388 | "text/plain": [ |
398 | | - "array([ 859554.79452055])" |
| 389 | + "array([859554.79452055])" |
399 | 390 | ] |
400 | 391 | }, |
401 | | - "execution_count": 73, |
| 392 | + "execution_count": 19, |
402 | 393 | "metadata": {}, |
403 | 394 | "output_type": "execute_result" |
404 | 395 | } |
405 | 396 | ], |
406 | 397 | "source": [ |
407 | | - "mj.predict(5000)" |
| 398 | + "mj.predict([[5000]])" |
408 | 399 | ] |
409 | 400 | } |
410 | 401 | ], |
|
424 | 415 | "name": "python", |
425 | 416 | "nbconvert_exporter": "python", |
426 | 417 | "pygments_lexer": "ipython3", |
427 | | - "version": "3.6.1" |
| 418 | + "version": "3.7.3" |
428 | 419 | } |
429 | 420 | }, |
430 | 421 | "nbformat": 4, |
|
0 commit comments