Skip to content

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Oct 22, 2025

📄 9% (0.09x) speedup for Select.from_dict in chromadb/execution/expression/operator.py

⏱️ Runtime : 2.76 milliseconds 2.52 milliseconds (best of 128 runs)

📝 Explanation and details

The optimized code achieves a 9% speedup by replacing multiple sequential if-elif conditions with a single dictionary lookup for special key mapping.

Key optimization:

  • Dictionary lookup vs. sequential comparisons: Instead of checking each special key (#id, #document, etc.) with separate if-elif statements, the code now uses a pre-built special_keys dictionary and performs a single k in special_keys lookup followed by direct dictionary access.

Why this is faster:

  • Dictionary lookups in Python are O(1) average case, while the original sequential if-elif chain requires up to 5 string comparisons in the worst case
  • The in operator on dictionaries uses hash table lookups, which are significantly faster than multiple string equality checks
  • Reduces the number of string comparisons from potentially 5 down to 1 hash lookup plus 1 dictionary access

Performance characteristics:

  • Large-scale improvements: The optimization shows the best gains (10-20% faster) on test cases with many special keys or mixed key types, where the dictionary lookup advantage compounds
  • Small overhead for simple cases: Basic tests show slight slowdowns (3-19%) due to the dictionary creation overhead, but this is amortized across larger inputs
  • Best suited for: Workloads processing many keys or repeated calls to from_dict(), where the dictionary lookup efficiency outweighs the initialization cost

The optimization maintains identical functionality while trading a small constant-time setup cost for significantly better scaling behavior with larger key sets.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 44 Passed
🌀 Generated Regression Tests 83 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 2 Passed
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
test_api.py::TestRoundTripConversion.test_select_round_trip 4.07μs 4.49μs -9.35%⚠️
test_api.py::TestSelectFromDict.test_empty_keys 3.29μs 3.78μs -13.1%⚠️
test_api.py::TestSelectFromDict.test_metadata_keys 4.91μs 5.38μs -8.79%⚠️
test_api.py::TestSelectFromDict.test_mixed_keys 4.64μs 5.16μs -10.1%⚠️
test_api.py::TestSelectFromDict.test_special_keys 5.25μs 5.98μs -12.3%⚠️
test_api.py::TestSelectFromDict.test_unexpected_keys 4.88μs 5.75μs -15.1%⚠️
test_api.py::TestSelectFromDict.test_validation 4.21μs 5.14μs -18.1%⚠️
🌀 Generated Regression Tests and Runtime
from dataclasses import dataclass, field
from typing import Any, Dict, Set, Union

# imports
import pytest  # used for our unit tests
from chromadb.execution.expression.operator import Select


# Minimal Key class for testing
class Key:
    def __init__(self, name):
        self.name = name

    def __eq__(self, other):
        if isinstance(other, Key):
            return self.name == other.name
        return False

    def __hash__(self):
        return hash(self.name)

    def __repr__(self):
        return f"Key({self.name!r})"

# Predefined Key constants
Key.ID = Key("#id")
Key.DOCUMENT = Key("#document")
Key.EMBEDDING = Key("#embedding")
Key.METADATA = Key("#metadata")
Key.SCORE = Key("#score")
from chromadb.execution.expression.operator import Select

# unit tests

# -------- Basic Test Cases --------

def test_basic_predefined_keys():
    # Test with all predefined keys
    data = {"keys": ["#id", "#document", "#embedding", "#metadata", "#score"]}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 5.41μs -> 5.79μs (6.63% slower)
    expected = {Key.ID, Key.DOCUMENT, Key.EMBEDDING, Key.METADATA, Key.SCORE}

def test_basic_metadata_keys():
    # Test with regular metadata keys
    data = {"keys": ["title", "author", "date"]}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 4.93μs -> 5.20μs (5.28% slower)
    expected = {Key("title"), Key("author"), Key("date")}

def test_basic_mixed_keys():
    # Test with both predefined and metadata keys
    data = {"keys": ["#document", "title", "author"]}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 4.74μs -> 4.93μs (3.76% slower)
    expected = {Key.DOCUMENT, Key("title"), Key("author")}

def test_basic_empty_keys():
    # Test with empty keys list
    data = {"keys": []}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 2.84μs -> 3.32μs (14.5% slower)

def test_basic_keys_as_tuple():
    # Test with keys provided as a tuple
    data = {"keys": ("#score", "foo")}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 4.55μs -> 4.89μs (7.05% slower)
    expected = {Key.SCORE, Key("foo")}

def test_basic_keys_as_set():
    # Test with keys provided as a set
    data = {"keys": {"#embedding", "bar"}}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 4.58μs -> 4.88μs (6.21% slower)
    expected = {Key.EMBEDDING, Key("bar")}

def test_basic_no_keys_field():
    # Test with no 'keys' field (should default to empty set)
    data = {}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 2.79μs -> 3.32μs (16.2% slower)

# -------- Edge Test Cases --------

def test_edge_non_dict_input():
    # Test with non-dict input
    with pytest.raises(TypeError):
        Select.from_dict(["keys", ["#document"]]) # 1.44μs -> 1.45μs (0.619% slower)

def test_edge_keys_not_iterable():
    # Test with keys not being a list/tuple/set
    with pytest.raises(TypeError):
        Select.from_dict({"keys": "#document"}) # 1.91μs -> 1.94μs (1.65% slower)

def test_edge_keys_contains_non_string():
    # Test with keys containing a non-string value
    with pytest.raises(TypeError):
        Select.from_dict({"keys": ["#document", 123]}) # 2.69μs -> 3.12μs (13.7% slower)

def test_edge_unexpected_extra_field():
    # Test with unexpected extra field in dict
    with pytest.raises(ValueError):
        Select.from_dict({"keys": ["title"], "extra": "value"}) # 5.41μs -> 6.02μs (10.1% slower)

def test_edge_duplicate_keys():
    # Test with duplicate keys (should be deduped in set)
    data = {"keys": ["#score", "#score", "title", "title"]}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 6.88μs -> 6.57μs (4.67% faster)
    expected = {Key.SCORE, Key("title")}

def test_edge_empty_string_key():
    # Test with empty string as key (allowed, creates Key(""))
    data = {"keys": [""]}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 3.83μs -> 4.39μs (12.8% slower)
    expected = {Key("")}

def test_edge_keys_is_none():
    # Test with keys set to None (should raise TypeError)
    with pytest.raises(TypeError):
        Select.from_dict({"keys": None}) # 2.10μs -> 2.02μs (3.51% faster)

def test_edge_keys_is_dict():
    # Test with keys set to a dict (should raise TypeError)
    with pytest.raises(TypeError):
        Select.from_dict({"keys": {"foo": "bar"}}) # 1.99μs -> 2.12μs (6.28% slower)

def test_edge_keys_contains_special_chars():
    # Test with keys containing special characters (allowed)
    data = {"keys": ["@foo", "bar/baz", "qux!"]}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 5.17μs -> 5.59μs (7.44% slower)
    expected = {Key("@foo"), Key("bar/baz"), Key("qux!")}

def test_edge_keys_contains_unicode():
    # Test with unicode string keys
    data = {"keys": ["😀", "标题", "#score"]}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 4.99μs -> 5.27μs (5.30% slower)
    expected = {Key("😀"), Key("标题"), Key.SCORE}

def test_edge_keys_is_empty_dict():
    # Test with keys as an empty dict (should raise TypeError)
    with pytest.raises(TypeError):
        Select.from_dict({"keys": {}}) # 1.92μs -> 1.92μs (0.470% faster)

def test_edge_keys_is_integer():
    # Test with keys as an integer (should raise TypeError)
    with pytest.raises(TypeError):
        Select.from_dict({"keys": 123}) # 1.93μs -> 1.97μs (2.48% slower)

def test_edge_keys_contains_none():
    # Test with keys containing None (should raise TypeError)
    with pytest.raises(TypeError):
        Select.from_dict({"keys": ["title", None]}) # 2.86μs -> 3.54μs (19.2% slower)

# -------- Large Scale Test Cases --------

def test_large_scale_many_metadata_keys():
    # Test with 1000 metadata keys
    keys = [f"meta_{i}" for i in range(1000)]
    data = {"keys": keys}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 279μs -> 253μs (10.3% faster)
    expected = {Key(f"meta_{i}") for i in range(1000)}

def test_large_scale_many_predefined_and_metadata_keys():
    # Test with 995 metadata keys + 5 predefined keys
    keys = [f"meta_{i}" for i in range(995)] + ["#id", "#document", "#embedding", "#metadata", "#score"]
    data = {"keys": keys}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 281μs -> 255μs (10.4% faster)
    expected = {Key(f"meta_{i}") for i in range(995)} | {Key.ID, Key.DOCUMENT, Key.EMBEDDING, Key.METADATA, Key.SCORE}

def test_large_scale_all_keys_are_duplicates():
    # Test with 1000 duplicate keys
    data = {"keys": ["title"] * 1000}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 425μs -> 385μs (10.3% faster)
    expected = {Key("title")}

def test_large_scale_keys_with_long_strings():
    # Test with long string keys
    keys = [("a" * 100) + str(i) for i in range(1000)]
    data = {"keys": keys}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 310μs -> 284μs (9.25% faster)
    expected = {Key(("a" * 100) + str(i)) for i in range(1000)}

def test_large_scale_keys_with_special_and_predefined():
    # Test with mix of special chars and predefined keys
    keys = [f"@meta_{i}" for i in range(995)] + ["#score", "#id", "#embedding", "#document", "#metadata"]
    data = {"keys": keys}
    codeflash_output = Select.from_dict(data); result = codeflash_output # 284μs -> 253μs (12.3% faster)
    expected = {Key(f"@meta_{i}") for i in range(995)} | {Key.SCORE, Key.ID, Key.EMBEDDING, Key.DOCUMENT, Key.METADATA}
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
from dataclasses import dataclass, field
from typing import Any, Dict, Set, Union

# imports
import pytest  # used for our unit tests
from chromadb.execution.expression.operator import Select


# Minimal Key class definition for testing
class Key:
    def __init__(self, name: str):
        self.name = name

    def __eq__(self, other):
        return isinstance(other, Key) and self.name == other.name

    def __hash__(self):
        return hash(self.name)

    def __repr__(self):
        return f"Key({self.name!r})"

# Initialize predefined key constants
Key.ID = Key("#id")
Key.DOCUMENT = Key("#document")
Key.EMBEDDING = Key("#embedding")
Key.METADATA = Key("#metadata")
Key.SCORE = Key("#score")
from chromadb.execution.expression.operator import Select

# unit tests

# ---------------------- BASIC TEST CASES ----------------------

def test_basic_select_special_keys():
    # Test with only special keys
    d = {"keys": ["#document", "#score"]}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 4.46μs -> 4.96μs (10.0% slower)

def test_basic_select_metadata_keys():
    # Test with only metadata keys
    d = {"keys": ["title", "author"]}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 4.44μs -> 4.97μs (10.7% slower)

def test_basic_select_mixed_keys():
    # Test with mixed special and metadata keys
    d = {"keys": ["#document", "title", "author"]}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 4.71μs -> 5.09μs (7.53% slower)

def test_basic_empty_keys():
    # Test with empty keys list
    d = {"keys": []}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 2.72μs -> 3.39μs (19.8% slower)

def test_basic_keys_as_tuple():
    # Test with keys as tuple
    d = {"keys": ("#embedding", "foo")}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 4.36μs -> 4.80μs (9.19% slower)

def test_basic_keys_as_set():
    # Test with keys as set
    d = {"keys": {"#score", "bar"}}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 4.51μs -> 4.96μs (9.07% slower)

def test_basic_missing_keys_field():
    # Test with missing keys field (should default to empty)
    d = {}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 2.72μs -> 3.30μs (17.5% slower)

# ---------------------- EDGE TEST CASES ----------------------

def test_edge_non_dict_input():
    # Test with non-dict input
    with pytest.raises(TypeError):
        Select.from_dict(["keys", ["#document"]]) # 1.46μs -> 1.44μs (1.46% faster)

def test_edge_keys_not_list_tuple_set():
    # Test with keys field not a list/tuple/set
    with pytest.raises(TypeError):
        Select.from_dict({"keys": "#document"}) # 1.94μs -> 1.93μs (0.414% faster)

def test_edge_keys_contains_non_string():
    # Test with keys containing non-string
    with pytest.raises(TypeError):
        Select.from_dict({"keys": ["#document", 123]}) # 2.70μs -> 3.20μs (15.8% slower)

def test_edge_unexpected_keys_in_dict():
    # Test with unexpected keys in the input dict
    with pytest.raises(ValueError) as excinfo:
        Select.from_dict({"keys": ["#document"], "foo": "bar"}) # 5.06μs -> 5.67μs (10.7% slower)

def test_edge_duplicate_keys():
    # Test with duplicate keys (should deduplicate in set)
    d = {"keys": ["#document", "#document", "title", "title"]}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 6.39μs -> 6.96μs (8.18% slower)

def test_edge_special_key_case_sensitivity():
    # Test with special key in wrong case (should be treated as metadata)
    d = {"keys": ["#Document"]}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 3.74μs -> 4.25μs (12.0% slower)

def test_edge_empty_string_key():
    # Test with empty string as key (should be accepted as metadata)
    d = {"keys": [""]}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 3.65μs -> 3.98μs (8.10% slower)

def test_edge_all_special_keys():
    # Test with all special keys
    d = {"keys": ["#id", "#document", "#embedding", "#metadata", "#score"]}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 5.31μs -> 5.13μs (3.63% faster)

def test_edge_keys_with_spaces():
    # Test with metadata keys containing spaces
    d = {"keys": ["first name", "last name"]}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 4.24μs -> 4.68μs (9.54% slower)

def test_edge_keys_with_unicode():
    # Test with metadata keys containing unicode characters
    d = {"keys": ["ключ", "标题"]}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 4.07μs -> 4.58μs (11.2% slower)

# ---------------------- LARGE SCALE TEST CASES ----------------------

def test_large_scale_many_metadata_keys():
    # Test with a large number of metadata keys
    keys = [f"meta_{i}" for i in range(1000)]
    d = {"keys": keys}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 279μs -> 251μs (11.0% faster)
    expected = {Key(k) for k in keys}

def test_large_scale_many_special_keys():
    # Test with repeated special keys (should deduplicate)
    keys = ["#id", "#document", "#embedding", "#metadata", "#score"] * 200
    d = {"keys": keys}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 134μs -> 111μs (20.4% faster)
    expected = {Key.ID, Key.DOCUMENT, Key.EMBEDDING, Key.METADATA, Key.SCORE}

def test_large_scale_mixed_keys():
    # Test with mix of special and metadata keys
    keys = ["#document", "#score"] + [f"meta_{i}" for i in range(998)]
    d = {"keys": keys}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 286μs -> 257μs (11.6% faster)
    expected = {Key.DOCUMENT, Key.SCORE} | {Key(f"meta_{i}") for i in range(998)}

def test_large_scale_performance():
    # Test performance for large input (not strict timing, but should not hang)
    keys = [f"key_{i}" for i in range(1000)]
    d = {"keys": keys}
    codeflash_output = Select.from_dict(d); sel = codeflash_output # 284μs -> 255μs (11.5% faster)

# ---------------------- DETERMINISM TEST CASES ----------------------

def test_determinism_same_input_same_output():
    # Test that the same input always produces the same output
    d = {"keys": ["#document", "title"]}
    codeflash_output = Select.from_dict(d); sel1 = codeflash_output # 4.60μs -> 5.16μs (10.8% slower)
    codeflash_output = Select.from_dict(d); sel2 = codeflash_output # 1.81μs -> 2.08μs (13.0% slower)

def test_determinism_set_equality():
    # Test that set equality works regardless of insertion order
    d1 = {"keys": ["#document", "title"]}
    d2 = {"keys": ["title", "#document"]}
    codeflash_output = Select.from_dict(d1); sel1 = codeflash_output # 3.90μs -> 4.37μs (10.8% slower)
    codeflash_output = Select.from_dict(d2); sel2 = codeflash_output # 1.96μs -> 2.05μs (4.53% slower)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
from chromadb.execution.expression.operator import Select
import pytest

def test_Select_from_dict():
    with pytest.raises(ValueError, match="Unexpected\\ keys\\ in\\ Select\\ dict:\\ \\{''\\}"):
        Select.from_dict({'keys': ('\x00\x00\x00'), '': 0})

def test_Select_from_dict_2():
    Select.from_dict({'keys': ['#id']})

def test_Select_from_dict_3():
    with pytest.raises(TypeError, match='Select\\ key\\ must\\ be\\ a\\ string,\\ got\\ int'):
        Select.from_dict({'keys': (0)})

def test_Select_from_dict_4():
    with pytest.raises(TypeError, match='Select\\ keys\\ must\\ be\\ a\\ list/tuple/set,\\ got\\ str'):
        Select.from_dict({'\x00\x00\x00\x00': '', 'keys': ''})

def test_Select_from_dict_5():
    with pytest.raises(ValueError, match="Unexpected\\ keys\\ in\\ Select\\ dict:\\ \\{'\\\\x00\\\\x00\\\\x00\\\\x00'\\}"):
        Select.from_dict({'keys': ['#metadata'], '\x00\x00\x00\x00': 0})
🔎 Concolic Coverage Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
codeflash_concolic_aqrniplu/tmp90wvxlim/test_concolic_coverage.py::test_Select_from_dict_2 4.92μs 5.71μs -13.8%⚠️
codeflash_concolic_aqrniplu/tmp90wvxlim/test_concolic_coverage.py::test_Select_from_dict_4 2.45μs 2.39μs 2.85%✅
codeflash_concolic_aqrniplu/tmp90wvxlim/test_concolic_coverage.py::test_Select_from_dict_5 5.61μs 6.63μs -15.4%⚠️

To edit these changes git checkout codeflash/optimize-Select.from_dict-mh1l2n7v and push.

Codeflash

The optimized code achieves a **9% speedup** by replacing multiple sequential if-elif conditions with a single dictionary lookup for special key mapping.

**Key optimization:**
- **Dictionary lookup vs. sequential comparisons**: Instead of checking each special key (`#id`, `#document`, etc.) with separate if-elif statements, the code now uses a pre-built `special_keys` dictionary and performs a single `k in special_keys` lookup followed by direct dictionary access.

**Why this is faster:**
- Dictionary lookups in Python are O(1) average case, while the original sequential if-elif chain requires up to 5 string comparisons in the worst case
- The `in` operator on dictionaries uses hash table lookups, which are significantly faster than multiple string equality checks
- Reduces the number of string comparisons from potentially 5 down to 1 hash lookup plus 1 dictionary access

**Performance characteristics:**
- **Large-scale improvements**: The optimization shows the best gains (10-20% faster) on test cases with many special keys or mixed key types, where the dictionary lookup advantage compounds
- **Small overhead for simple cases**: Basic tests show slight slowdowns (3-19%) due to the dictionary creation overhead, but this is amortized across larger inputs
- **Best suited for**: Workloads processing many keys or repeated calls to `from_dict()`, where the dictionary lookup efficiency outweighs the initialization cost

The optimization maintains identical functionality while trading a small constant-time setup cost for significantly better scaling behavior with larger key sets.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 22, 2025 05:59
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Oct 22, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants